实验14多普勒效应.docx
《实验14多普勒效应.docx》由会员分享,可在线阅读,更多相关《实验14多普勒效应.docx(13页珍藏版)》请在冰豆网上搜索。
实验14多普勒效应
多普勒效应综合实验
当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。
多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。
例如:
原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。
基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。
在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。
电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。
本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。
【实验目的】
1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。
2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究:
①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。
②自由落体运动,并由V-t关系直线的斜率求重力加速度。
③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。
④其它变速直线运动。
【实验原理】
1、超声的多普勒效应
根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为:
f=f0(u+V1cosα1)/(u–V2cosα2)
(1)
式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。
若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从
(1)式可得接收器接收到的频率应为:
f=f0(1+V/u)
(2)
当接收器向着声源运动时,V取正,反之取负。
若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据
(2)式,作f—V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k。
由
(2)式可解出:
V=u(f/f0–1)(3)
若已知声速u及声源频率f0,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。
2、超声的红外调制与接收
早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。
由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。
新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。
即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。
由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。
采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。
信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。
【实验仪器及简介】
多普勒效应综合实验仪由实验仪,超声发射/接收器,红外发射/接收器,导轨,运动小车,支架,光电门,电磁铁,弹簧,滑轮,砝码等组成。
实验仪内置微处理器,带有液晶显示屏,图1为实验仪的面板图。
实验仪采用菜单式操作,显示屏显示菜单及操作提示,由pqtu键选择菜单或修改参数,
按“确认”键后仪器执行。
可在“查询”页面,查询到在实验时已保存的实验的数据。
操作者只
须按提示即可完成操作,学生可把时间和精力用于物理概念和研究对象,不必花大量时间熟悉特定的仪器使用,提高了课时利用率。
实验一验证多普勒效应并由测量数据计算声速
让小车以不同速度通过光电门,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率。
由仪器显示的f-V关系图可看出,若测量点成直线,符合
(2)式描述的规律,即直观验证了多普勒效应。
用作图法或线性回归法计算f-V直线的斜率k,由k计算声速u并与声速的理论值比较,计算其百分误差。
一.仪器安装
如图2所示。
所有需固定的附件均安装在导轨上,并在两侧的安装槽上固定。
调节水平超声传感发生器的高度,使其与超声接收器(已固定在小车上)在同一个平面上,再调整红外接收传感器高度和方向,使其与红外发射器(已固定在小车上)在同一轴线上。
将组件电缆接入实验仪的对应接口上。
安装完毕后,让电磁铁吸住小车,给小车上的传感器充电,第一次充电时间约6~8秒,充满后(仪器面板充电灯变绿色)可以持续使用4~5分钟。
在充电时要注意,必须让小车上的充电板和电磁铁上的充电针接触良好。
【注意事项】
安装时要尽量保证红外接收器、小车上的红外发射器和超声接收器、超声发射器三者之间在同一轴线上,以保证信号传输良好;
安装时不可挤压连接电缆,以免导线折断;
小车不使用时应立放,避免小车滚轮沾上污物,影响实验进行。
二.测量准备
1.实验仪开机后,首先要求输入室温。
因为计算物体运动速度时要代入声速,而声速是温度的函数。
利用tu将室温T值调到实际值,按“确认”。
2.第二个界面要求对超声发生器的驱动频率进行调谐。
在超声应用中,需要将发生器与接收器的频率匹配,并将驱动频率调到谐振频率f0,这样接收器获得的信号幅度才最强,才能有效的发射与接收超声波。
一般f0在40KHz左右。
调谐好后,面板上的锁定灯将熄灭。
3.电流调至最大值后,按“确认”。
本仪器所有操作,均要按“确认”键后,数据才被写入仪器。
【注意事项】
调谐及实验进行时,须保证超声发生器和接收器之间无任何阻挡物;
为保证使用安全,三芯电源线须可靠接地。
三.测量步骤
1.在液晶显示屏上,选中“多普勒效应验证实验”,并按“确认”;
2.利用u键修改测试总次数(选择范围5~10,一般选5次),按▼,选中“开始测试”;
3.准备好后,按“确认”,电磁铁释放,测试开始进行,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率;
改变小车的运动速度,可用以下两种方式:
a.砝码牵引:
利用砝码的不同组合实现;
b.用手推动:
沿水平方向对小车施以变力,使其通过光电门。
为便于操作,一般由小到大改变小车的运动速度。
4.每一次测试完成,都有“存入”或“重测”的提示,可根据实际情况选择,“确认”后回到测试状态,并显示测试总次数及已完成的测试次数;
5.改变砝码质量(砝码牵引方式),并退回小车让磁铁吸住,按“开始”,进行第二次测试;
6.完成设定的测量次数后,仪器自动存储数据,并显示f-V关系图及测量数据。
【注意事项】
小车速度不可太快,以防小车脱轨跌落损坏。
四.数据记录与处理
由f-V关系图可看出,若测量点成直线,符合
(2)式描述的规律,即直观验证了多普勒效应。
用u键选中“数据”,q键翻阅数据并记入表1中,用作图法或线性回归法计算f-V关系直线的斜率k。
公式(4)为线性回归法计算k值的公式,其中测量次数i=5~n,n≤10。
(4)
由k计算声速u=f0/k,并与声速的理论值比较,声速理论值由u0=331(1+t/273)1/2(米/秒)计算,t表示室温。
测量数据的记录是仪器自动进行的。
在测量完成后,只需在出现的显示界面上,用u键选中“数据”,q键翻阅数据并记入表1中,然后按照上述公式计算出相关结果并填入表格。
表1多普勒效应的验证与声速的测量f0=
测量数据
直线斜率
k(1/m)
声速测量值
u=f0/k(m/s)
声速理论值u0(m/s)
百分误差
(u-u0)/u0
次数i
1
2
3
4
5
6
Vi(m/s)
fi(Hz)
实验二研究匀变速直线运动,验证牛顿第二运动定律
质量为M的接收器组件,与质量为m的砝码托及砝码悬挂于滑轮的两端,运动系统的总质量为M+m,所受合外力为(M-m)g(滑轮转动惯量与摩擦力忽略不计)。
根据牛顿第二定律,系统的加速度应为:
a=g(M-m)/(M+m)(5)
采样结束后会显示V-t曲线,将显示的采样次数及对应速度记入表2中。
由记录的t,V数据求得V-t直线的斜率即为此次实验的加速度a。
将表2得出的加速度a作纵轴,(M-m)/(M+m)作横轴作图,若为线性关系,符合(5)式描述的规律,即验证了牛顿第二定律,且直线的斜率应为重力加速度。
一.仪器安装与测量准备
1.仪器安装如图4所示,让电磁阀吸住自由落体接收器,并让该接收器上充电部分和电磁阀上的充电针接触良好。
2.用天平称量接收器组件的质量M,砝码托及砝码质量,每次取不同质量的砝码放于砝码托上,记录每次实验对应的m。
3.由于超声发生器和接收器已经改变了,因此需要对超声发生器的驱动频率重新调谐。
【注意事项】
须将“自由落体接收器保护盒”套于发射器上,避免发射器在非正常操作时受到冲击而损坏;
安装时切不可挤压电磁阀上的电缆;
调谐时需将自由落体接收组件用细绳拴住,置于超声发射器和红外接收器得中间,如此兼顾信号强度,便于调谐。
④安装滑轮时,滑轮支杆不能遮住红外接收和自由落体组件之间信号传输。
二.测量步骤
1.在液晶显示屏上,用▼选中“变速运动测量实验”,并按“确认”;
2.利用u键修改测量点总数为8(选择范围8~150),▼选择采样步距,并修改为50ms(选择范围50~100ms),选中“开始测试”;
3.按“确认”后,磁铁释放,接收器组件拉动砝码作垂直方向的运动。
测量完成后,显示屏上出现测量结果。
4.在结果显示界面中用u键选择“返回”,“确认”后重新回到测量设置界面。
改变砝码质量,按以上程序进行新的测量。
【注意事项】
需保证自由落体组件内电池充满电后(即实验仪面板上的充电指示灯为绿色)开始测量。
三.数据记录与处理
采样结束后显示V-t直线,用u键选择“数据”,将显示的采样次数及相应速度记入表2中,ti为采样次数与采样步距的乘积。
由记录的t,V数据求得V-t直线的斜率,就是此次实验的加速度a。
将表2得出的加速度a作纵轴,(M-m)/(M+m)作横轴作图,若为线性关系,符合(5)式描述的规律,即验证了牛顿第二定律,且直线的斜率应为重力加速度。
【注意事项】
为避免电磁铁剩磁的影响,第1组数据不记;
接收器组件下落时,若其运动方向不是严格的在声源与接收器的连线方向,则α1(为声源与接收器连线与接收器运动方向之间的夹角,右图是其示意图)在运动过程中增加,此时公式
(2)不再严格成立,由(3)式计算的速度误差也随之增加。
故在数据处理时,可根据情况对最后2个采样点进行取舍。
表2匀变速直线运动的测量M=(kg)
采样次数i
2
3
4
5
6
7
8
加速度a
(m/s2)
m
(kg)
M-m
M+m
ti=0.05(i-1)(s)
Vi
ti=0.05(i-1)(s)
Vi
ti=0.05(i-1)(s)
Vi
ti=0.05(i-1)(s)
Vi
实验三研究自由落体运动,求自由落体加速度
一.仪器安装
仪器安装如图6所示,注意事项同实验二。
二.测量步骤
1.在液晶显示屏上,用▼选中“变速运动测量实验”,并按“确认”;
2.利用u键修改测量点总数为8(选择范围8~150),▼选择采样步距,并修改为50ms(选择范围50~100ms),选中“开始测试”;
3.按“确认”后,电磁铁释放,接收器组件自由下落1段距离后被细绳拉住。
测量完成后,显示屏上出现测量结果。
4.在结果显示界面中用u键选择“返回”,“确认”后重新回到测量设置界面。
可按以上程序进行新的测量。
三.数据记录与处理
将测量数据记入表3中,由测量数据求得V-t直线的斜率即为重力加速度g。
为减小偶然误差,可作多次测量,将测量的平均值作为测量值,并将测量值与理论值比较,求百分误差。
采样次数i
2
3
4
5
6
7
8
g
(m/s2)
平均值g
理论值g0
百分误差
(g-g0)/g0
ti=0.05(i-1)(s)
Vi
ti=0.05(i-1)(s)
Vi
ti=0.05(i-1)(s)
Vi
ti=0.05(i-1)(s)
Vi
表3自由落体运动的测量
【注意事项】
测量时必须保证接收器与发射器之间无任何阻挡物,其他实验注意事项及数据记录方法同实验二。
实验四、研究简谐振动
当质量为m的物体受到大小与位移成正比,而方向指向平衡位置的力的作用时,若以物体的运动方向为x轴,其运动方程为:
(6)
由(6)式描述的运动称为简谐振动,当初始条件为t=0时,x=-A0,V=dx/dt=0,则方程(6)的解为:
x=-A0cosω0t(7)
将(7)式对时间求导,可得速度方程:
V=ω0A0sinω0t(8)
由(7)(8)式可见物体作简谐振动时,位移和速度都随时间周期变化,式中ω0=(k/m)1/2,为振动的角频率。
测量时仪器的安装如图7,若忽略空气阻力,根据胡克定律,作用力与位移成正比,悬挂在弹簧上的物体应作简谐振动,而(6)式中的k为弹簧的倔强系数。
一.仪器安装与测量准备
仪器的安装如图7所示。
将弹簧悬挂于电磁铁上方的挂钩孔中,接收器组件的尾翼悬挂在弹簧上。
用天平称量垂直运动超声接收器接收器组件的质量M,测量接收器悬挂上之后弹簧的伸长量Δx,记入表4中,就可计算k及ω0。
二.测量步骤:
1.在液晶显示屏上,用▼选中“变速运动测量实验”,并按“确认”;
2.利用u键修改测量点总数为150(选择范围8~150),▼选择采样步距,并修改为100(选择范围50~100ms),选中“开始测试”;
3.将接收器从平衡位置垂直向下拉约20cm,松手让接收器自由振荡,然后按“确认”,接收器组件开始作简谐振动。
实验仪按设置的参数自动采样,测量完成后,显示屏上出现速度随时间变化关系的曲线;
4.在结果显示界面中用u键选择“返回”,“确认”后重新回到测量设置界面。
可按以上程序进行新的测量。
【注意事项】
接收器自由振荡开始后,再按“确认”键;
三.数据记录与处理
查阅数据,记录第1次速度达到最大时的采样次数N1max和第11次速度达到最大时的采样次数N11max,就可计算实际测量的运动周期T及角频率ω,并可计算ω0与ω的百分误差。
表4简谐振动的测量
M
(kg)
Δx
(m)
k=mg/Δx
(kg/s2)
ω0=(k/m)1/2
(1/s)
N1max
N11max
T=0.01(N11max-N1max)
(s)
ω=2π/T
(1/s)
百分误差
(ω-ω0)/ω0
其它变速运动的测量
以上介绍了部分实验内容的测量方法和步骤,这些内容的测量结果可与理论比较,便于得出明确的结论,适合学生基础实验,也便于使用者对仪器的使用及性能有所了解。
若让学生根据原理自行设计实验方案,也可用作综合实验。
图8表示了采样数60,采样间隔80ms时,对用两根弹簧拉着的小车(小车及支架上留有弹簧挂钩孔)所做水平阻尼振动的一次测量及显示实例。
(在实验中,可以将小车上传感器和电磁阀用充电电缆连接,保证实验连续)。
与传统物理实验用光电门测量物体运动速度相比,用本仪器测量物体的运动具有更多的设置灵活性,测量快捷,既可根据显示的V-t图一目了然的定性了解所研究的运动的特征,又可查阅测量数据作进一步的定量分析。
特别适合用于综合实验,让学生自主的对一些复杂的运动进行研究,对理论上难于定量的因素进行分析,并得出自己的结论(如研究摩擦力与运动速度的关系,或与摩擦介质的关系)。
简单故障排除
故障现象
处理办法
电缆连接时发现有一根电缆的插头与一个插座不匹配
4芯插头插到了2芯插座的位置,交换过来即可
光电门或超声发射器的定位铆钉未卡在导轨表面
将附件安装到位
电磁铁无磁性
电磁铁连接电缆有断点,检查导线,并将断开处焊好即可
多普勒效应的验证与声速的测量时,出现的不是一条倾斜直线
未改变小车的运动速度或速度改变太小。