《数字信号处理》实验报告4.docx

上传人:b****3 文档编号:5454051 上传时间:2022-12-16 格式:DOCX 页数:8 大小:38.03KB
下载 相关 举报
《数字信号处理》实验报告4.docx_第1页
第1页 / 共8页
《数字信号处理》实验报告4.docx_第2页
第2页 / 共8页
《数字信号处理》实验报告4.docx_第3页
第3页 / 共8页
《数字信号处理》实验报告4.docx_第4页
第4页 / 共8页
《数字信号处理》实验报告4.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

《数字信号处理》实验报告4.docx

《《数字信号处理》实验报告4.docx》由会员分享,可在线阅读,更多相关《《数字信号处理》实验报告4.docx(8页珍藏版)》请在冰豆网上搜索。

《数字信号处理》实验报告4.docx

《数字信号处理》实验报告4

河北联合大学

信息工程学院通信工程系

 

数字信号处理

实验名称:

IIR数字滤波器设计及软件实现

班级:

11通信1班

学号:

201114200103

姓名:

高腾

指导老师:

崔东艳

 

实验名称:

IIR数字滤波器设计及软件实现

学生姓名:

高腾

班级:

11通信1班

学号:

201114200103

同组人:

指导老师:

崔东艳

成绩:

预习报告

实验目的:

(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;

(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法。

(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

实验要求:

设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。

基本设计过程是:

①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。

第六章介绍的滤波器设计函数butter、cheby1、cheby2和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。

本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

 

实验报告

实验目的:

(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;

(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法。

(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

实验要求:

设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。

基本设计过程是:

①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。

第六章介绍的滤波器设计函数butter、cheby1、cheby2和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。

本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

实验方法(步骤及结果):

functionst=mstg

%产生信号序列向量st,并显示st的时域波形和频谱

%st=mstg返回三路调幅信号相加形成的混合信号,长度N=1600

N=1600%N为信号st的长度。

Fs=10000;T=1/Fs;Tp=N*T;%采样频率Fs=10kHz,Tp为采样时间

t=0:

T:

(N-1)*T;k=0:

N-1;f=k/Tp;

fc1=Fs/10;%第1路调幅信号的载波频率fc1=1000Hz,

fm1=fc1/10;%第1路调幅信号的调制信号频率fm1=100Hz

fc2=Fs/20;%第2路调幅信号的载波频率fc2=500Hz

fm2=fc2/10;%第2路调幅信号的调制信号频率fm2=50Hz

fc3=Fs/40;%第3路调幅信号的载波频率fc3=250Hz,

fm3=fc3/10;%第3路调幅信号的调制信号频率fm3=25Hz

xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t);%产生第1路调幅信号

xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t);%产生第2路调幅信号

xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t);%产生第3路调幅信号

st=xt1+xt2+xt3;%三路调幅信号相加

fxt=fft(st,N);%计算信号st的频谱

%====以下为绘图部分,绘制st的时域波形和幅频特性曲线====================

subplot(3,1,1)

plot(t,st);grid;xlabel('t/s');ylabel('s(t)');

axis([0,Tp/8,min(st),max(st)]);title('(a)s(t)的波形')

subplot(3,1,2)

stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b)s(t)的频谱')

axis([0,Fs/5,0,1.2]);

xlabel('f/Hz');ylabel('幅度')

exp4.m:

%========================

clearall;closeall;clc;

Fs=10000;T=1/Fs;  %采样频率

%调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st

st=mstg;

%低通滤波器设计与实现

%========================

fp=280;fs=450;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60;  %DF指标(低通滤波器的通、阻带边界频)

[N,wp]=ellipord(wp,ws,rp,rs);%调用ellipord计算椭圆DF阶数N和通带截止频率wp

[B,A]=ellip(N,rp,rs,wp);     %调用ellip计算椭圆带通DF系统函数系数向量B和A

y1t=filter(B,A,st);    %滤波器软件实现

%低通滤波器设计与实现绘图部分

figure

(2);subplot(3,1,1);

myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线

yt='y_1(t)';

subplot(3,1,2);tplot(y1t,T,yt);%调用绘图函数tplot绘制滤波器输出波形

%带通滤波器设计与实现

%========================

fpl=440;fpu=560;fsl=275;fsu=900;

wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;

[N,wp]=ellipord(wp,ws,rp,rs);   %调用ellipord计算椭圆DF阶数N和通带截止频率wp

[B,A]=ellip(N,rp,rs,wp);%调用ellip计算椭圆带通DF系统函数系数向量B和A

y2t=filter(B,A,st);    %滤波器软件实现

%带通滤波器设计与实现绘图部分

figure(3);subplot(3,1,1);

myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线

yt='y_2(t)';

subplot(3,1,2);tplot(y2t,T,yt);%调用绘图函数tplot绘制滤波器输出波形

%高通滤波器设计与实现

%========================

fp=890;fs=600;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60;  %DF指标(低通滤波器的通、阻带边界频)

[N,wp]=ellipord(wp,ws,rp,rs);   %调用ellipord计算椭圆DF阶数N和通带截止频率wp

[B,A]=ellip(N,rp,rs,wp,'high');%调用ellip计算椭圆带通DF系统函数系数向量B和A

y3t=filter(B,A,st);    %滤波器软件实现

%高低通滤波器设计与实现绘图部分

figure(3);subplot(3,1,1);

myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线

yt='y_3(t)';

subplot(3,1,2);tplot(y3t,T,yt);%调用绘图函数tplot绘制滤波器输出波形

实验结果:

思考题简答 

(1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。

 

(2)

(2)信号产生函数mstg中采样点数N=800,对st进行N点FFT可以得到6根理想谱线。

如果取N=1000,可否得到6根理想谱线?

为什么?

N=2000呢?

请改变函数mstg中采样点数N的值,观察频谱图验证您的判断是否正确。

 

(3)修改信号产生函数mstg,给每路调幅信号加入载波成分,产生调幅(AM)信号,重复本实验,观察AM信号与抑制载波调幅信号的时域波形及其频谱的差别。

 

答:

分析发现,st的每个频率成分都是25Hz的整数倍。

采样频率Fs=10kHz=25×400Hz,即在25Hz的正弦波的1个周期中采样400点。

所以,当N为400的整数倍时一定为st的整数个周期。

因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。

如果取N=1000,不是400的整数倍,不能得到6根理想谱线 

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 国外设计风格

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1