遗传算法matlab实现源程序.docx

上传人:b****5 文档编号:5397979 上传时间:2022-12-15 格式:DOCX 页数:9 大小:46.09KB
下载 相关 举报
遗传算法matlab实现源程序.docx_第1页
第1页 / 共9页
遗传算法matlab实现源程序.docx_第2页
第2页 / 共9页
遗传算法matlab实现源程序.docx_第3页
第3页 / 共9页
遗传算法matlab实现源程序.docx_第4页
第4页 / 共9页
遗传算法matlab实现源程序.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

遗传算法matlab实现源程序.docx

《遗传算法matlab实现源程序.docx》由会员分享,可在线阅读,更多相关《遗传算法matlab实现源程序.docx(9页珍藏版)》请在冰豆网上搜索。

遗传算法matlab实现源程序.docx

遗传算法matlab实现源程序

附页:

一.遗传算法源程序:

clc;

clear;

population;

%评价目标函数值

foruim=1:

popsize

   vector=population(uim,:

);

   obj(uim)=hanshu(hromlength,vector,phen);

end

%obj

%min(obj)

clearuim;

objmin=min(obj);

forsequ=1:

popsize

   ifobj(sequ)==objmin

       opti=population(sequ,:

);

   end

end

clearsequ;

fmax=22000;

%==

forgen=1:

maxgen

%选择操作

%将求最小值的函数转化为适应度函数

forindivi=1:

popsize

   obj1(indivi)=1/obj(indivi);

end

clearindivi;

%适应度函数累加总合

total=0;

forindivi=1:

popsize

   total=total+obj1(indivi);

end

clearindivi;

%每条染色体被选中的几率

forindivi=1:

popsize

   fitness1(indivi)=obj1(indivi)/total;

end

clearindivi;

%各条染色体被选中的范围

forindivi=1:

popsize

   fitness(indivi)=0;

   forj=1:

indivi

       fitness(indivi)=fitness(indivi)+fitness1(j);

   end

end

clearj;

fitness;

%选择适应度高的个体

forranseti=1:

popsize

   ran=rand;

   while(ran>1||ran<0)

       ran=rand;

   end

   ran;

   ifran<=fitness

(1)

       newpopulation(ranseti,:

)=population(1,:

);

   else

       forfet=2:

popsize

           if(ran>fitness(fet-1))&&(ran<=fitness(fet))

               newpopulation(ranseti,:

)=population(fet,:

);

           end

       end

   end

end

clearran;

newpopulation;

%交叉

forint=1:

2:

popsize-1

   popmoth=newpopulation(int,:

);                     

   popfath=newpopulation(int+1,:

);                 

   popcross(int,:

)=popmoth;

   popcross(int+1,:

)=popfath;

   randnum=rand;

   if(randnum

       cpoint1=round(rand*hromlength);         

       cpoint2=round(rand*hromlength);           

       while(cpoint2==cpoint1)                 

           cpoint2=round(rand*hromlength);

       end

       ifcpoint1>cpoint2                     

           tem=cpoint1;

           cpoint1=cpoint2;

           cpoint2=tem;

       end

       cpoint1;

       cpoint2;

       forterm=cpoint1+1:

cpoint2                   

           forss=1:

hromlength

               ifpopcross(int,ss)==popfath(term)

                   tem1=popcross(int,ss);

                   popcross(int,ss)=popcross(int,term);

                   popcross(int,term)=tem1;

               end

           end

           cleartem1;

       end

       forterm=cpoint1+1:

cpoint2                   

           forss=1:

hromlength

               ifpopcross(int+1,ss)==popmoth(term)

                   tem1=popcross(int+1,ss);

                   popcross(int+1,ss)=popcross(int+1,term);

                   popcross(int+1,term)=tem1;

               end

           end

           cleartem1;

       end

   end

   clearterm;

end

clearrandnum;

popcross;

%变异操作

newpop=popcross;

forint=1:

popsize

   randnum=rand;

   ifrandnum

       cpoint12=round(rand*hromlength);         

       cpoint22=round(rand*hromlength);        

       if(cpoint12==0)

           cpoint12=1;

       end

       if(cpoint22==0)

           cpoint22=1;

       end

       while(cpoint22==cpoint12)                

           cpoint22=round(rand*hromlength);

           ifcpoint22==0;

               cpoint22=1;

           end

       end

       temp=newpop(int,cpoint12);

       newpop(int,cpoint12)=newpop(int,cpoint22);

       newpop(int,cpoint22)=temp;

   end

end

newpop;

clearcpoint12;

clearcpoint22;

clearrandnum;

clearint;

forium=1:

popsize

   vector1=newpop(ium,:

);

   obj1(ium)=hanshu(hromlength,vector1,phen);

end

clearium;

obj1max=max(obj1);

forar=1:

popsize

   ifobj1(ar)==obj1max

       newpop(ar,:

)=opti;

   end

end

%遗传操作结束

二.粒子群算法源程序:

%------初始格式化--------------------------------------------------

clearall;

clc;

formatlong;

%------给定初始化条件----------------------------------------------

c1=1.4962;%学习因子1

c2=1.4962;%学习因子2

w=0.7298;%惯性权重

MaxDT=100;%最大迭代次数

D=2;%搜索空间维数(未知数个数)

N=40;%初始化群体个体数目

eps=10^(-6);%设置精度(在已知最小值时候用)

%------初始化种群的个体(可以在这里限定位置和速度的范围)------------

fori=1:

N

forj=1:

D

x(i,j)=randn;%随机初始化位置

v(i,j)=randn;%随机初始化速度

end

end

%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------

fori=1:

N

p(i)=fitness(x(i,:

),D);

y(i,:

)=x(i,:

);

end

pg=x(1,:

);%Pg为全局最优

fori=2:

N

iffitness(x(i,:

),D)

pg=x(i,:

);

end

end

%------进入主要循环,按照公式依次迭代,直到满足精度要求------------

fort=1:

MaxDT

t

fori=1:

N

v(i,:

)=w*v(i,:

)+c1*rand*(y(i,:

)-x(i,:

))+c2*rand*(pg-x(i,:

));

x(i,:

)=x(i,:

)+v(i,:

);

iffitness(x(i,:

),D)

p(i)=fitness(x(i,:

),D);

y(i,:

)=x(i,:

);

end

ifp(i)

pg=y(i,:

);

end

end

Pbest(t)=fitness(pg,D);

end

%------进入主要循环,按照公式依次迭代,直到满足精度要求------------

fort=1:

MaxDT

fori=1:

N

v(i,:

)=w*v(i,:

)+c1*rand*(y(i,:

)-x(i,:

))+c2*rand*(pg-x(i,:

));

x(i,:

)=x(i,:

)+v(i,:

);

iffitness(x(i,:

),D)

p(i)=fitness(x(i,:

),D);

y(i,:

)=x(i,:

);

end

ifp(i)

pg=y(i,:

);

end

end

Pbest(t)=fitness(pg,D);

end

%------最后给出计算结果

disp('*************************************************************')

disp('函数的全局最优位置为:

')

Solution=pg'

disp('最后得到的优化极值为:

')

Result=fitness(pg,D)

disp('*************************************************************')

[X,Y]=meshgrid(-500:

2:

500);

Z=X.*sin(sqrt(X))+Y.*(sin(sqrt(Y)));

holdon

contour(X,Y,Z)

plot(x(:

1),x(:

2),'*');

holdoff

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 节日庆典

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1