整形修复 组织工程中英对照辅导阅读材料.docx
《整形修复 组织工程中英对照辅导阅读材料.docx》由会员分享,可在线阅读,更多相关《整形修复 组织工程中英对照辅导阅读材料.docx(13页珍藏版)》请在冰豆网上搜索。
整形修复组织工程中英对照辅导阅读材料
Chapter15Basicprincipleoftissueengineeringanditsapplications
上海交通大学医学院附属第九人民医院
刘伟,曹谊林
Treatmentoftissueinjuryanddefectremainsamajorchallengetoreconstructivesurgery,partlybecausethereislimitedsourceavailableforautologoustissuegrafts.Currently,manyofthesurgicalproceduresinreconstructivesurgerytrytorepairtissuedefectwiththepriceofcreatinganotherdefectsomewhere,whichisnotfunctionallyasimportantasthesitetoberepaired.Thedevelopmentoftissueengineeringtechniqueprovidesapromisingapproachforregenerativerepairoftissuedefect.Asanexample,thegenerationofhumanearshapecartilageonthebackofmousevividlyillustratesthepotentialofusingengineeredearcartilagetorepairhumaneardefect[1].
Definitionoftissueengineering
Thebasicconceptoftissueengineeringincludesascaffoldthatprovidesanarchitectureonwhichseededcellscanorganizeanddevelopintothedesiredorganortissuepriortoimplantation.Thescaffoldprovidesaninitialbiomechanicalprofileforthereplacementtissueuntilthecellsproduceanadequateextracellularmatrix.Duringtheformation,deposition,andorganizationofthenewlygeneratedmatrix,thescaffoldiseitherdegradedormetabolized,eventuallyleavingavitalorganortissuethatrestores,maintains,orimprovestissuefunction(Figure1)[2].
Figure1
Threekeycomponentsoftissueengineeringandtheirroles
(1)Seedcells:
thecomponentformatrixproduction,depositionandtissueformation.
(2)Scaffold:
thesubstancethatprovidesathree-dimensionalplaceforcellstoreside,proliferateandproducematrix.
(3)Tissueformationenvironment:
afterseedingonthescaffold,cellsstarttogrow,produceanddepositextracellularmatricesonthescaffold.Inaproperenvironment,withgradualdegradationofthescaffoldandgradualcellproliferationandmatrixproductionandpropertissueremodeling,anengineeredtissuegraduallyformandbecomemature.
Scaffoldmaterialtypesandthegeneralrequirements
Basedonthesourceofmaterials,thescaffoldscanbedividedintotwogroups:
naturalscaffoldsandsyntheticpolymerscaffolds.Naturalscaffoldsaregenerallyderivedfromplantandanimalsourcesandarecomposedofproteinorcarbohydrates,includingcollagen,gelatin,glygosaminoglycans,hyaluronicacid,fibrinandchitosan,etc.Theadvantageofnaturalscaffoldsistheirexcellentbiocompatibility.
Syntheticpolymersarethepolymerizationofdifferentmonomerssuchashydroxylacidandester.Themostcommonlyusedpolymersarepoly(-hydroxyacids),includingpolyglycolicacid(PGA),polylacticacid(PLA)andtheirco-polymerpoly(lacticacid-co-glycolicacid)orPLGA.ThesepolymerscanbehydrolyzedbywatertoreducetheirmolecularweightandeventuallybemetabolizedintowaterandCO2.Theadvantageofthesescaffoldsisthatsyntheticpolymerscanbedesignedandmanufacturedfortheirexactdegradabilityanddegradationtimeaswellastheirporesizeandporosityandotherphysicalandchemicalproperties.Thusthequalityofsyntheticscaffoldscanbebettercontrolledcomparingwithnaturalscaffolds.Thisallowsforreproductioninlargequantitieswithsimilarcharacters.
Thegeneralrequirementsforscaffoldsinclude:
(1)Goodbiocompatibility:
thiswillmakesurethatcellsarehappytostayinthescaffoldandareabletoproliferateandmakeextracellularmatrix.
(2)Suitablebiodegradability:
scaffoldshouldbecompletelydegradedaftertissueformation.Inaddition,thedegradationrateshouldmatchtherateofcellgrowthandtissueformation.Furthermore,thedegradationrateshouldbeabletocontrolaccordingtotherequirementsofdifferenttypesoftissues.
(3)Three-dimensionalporousstructure:
thisisimportanttoprovidecellsaproperspacetoattach,growandproducematrix.Italsoallowsfornutritionandwastetransportationandtheaccessofneovascularization.
(4)Goodplasticityandmechanicalproperty:
thisistomakesuretogenerateascaffoldwithadesiredshapeandthescaffoldwillhaveenoughstrengthtosupportthefunctionsoftheengineeredtissues.
(5)Appropriatesurfacepropertiesforcell-scaffoldinteraction:
thisisparticularlyimportantformaintainingnormalcellphenotype,orpromotingcelldifferentiationinadditiontocellattachmentandgrowth.
(6)Easytomanufacture:
lowcostandeaseformanufactureisgenerallyrequiredinordertofabricatescaffoldinlargescaleforthepracticalapplications.
(7)Easeforsterilization:
thisistomakesuresterilizationwillnotaffectthebasiccharactersofthescaffold.
Applicationsofengineeredtissuestotissuerepair
Plasticsurgeryisaspecializedbranchofsurgeryconcernedwiththerepairofdeformitiesandthecorrectionoffunctionaldeficits.However,itisanoticeablefactthatdonorsitemorbidityisthepricethatpatientsmustpayformanyreconstructiveplasticsurgeriesinordertoachievethegoalsofdeformityrepairandfunctionaldeficitcorrection.Ithasbeenalongingaimforplasticsurgeonstogainsatisfactoryresultofrepairingprimarydefectbytissuestransferwithoutcausingsecondarydefect.Thedevelopmentoftissueengineeringtechnologyprovidessuchafeasibleapproach.Thefollowingsaretheexamplesofengineeredtissuerepairforbone,cartilageandtendon.
Boneengineeringandrepairinimmunocompetentanimals
Thefirstexampleistissueengineeredbonerepairforcraniofacialdefect[9].Inasheepmodel,bilateralcranialdefectswithadiameterof20mmwerecreatedandtheexperimentalsidedefectwasrepairedwithabonegraftconstitutedwithinvitroinducedautologousbonemarrowstromalcells(BMSCs)andcalciumalginate.Histologydemonstratedthatnewbonetissuewasformedat6weekspost-repairattheexperimentaldefect,whichbecamemorematuredandcontainedabundantcollagenmatrixat18weeks.Three-dimensionalCTscanningdemonstratedthatthebonedefectsinexperimentalgroupwerealmostcompletelyrepairedbytheengineeredbonetissueat18weeks.Incontrast,thecontroldefects,intowhichcalciumalginatealonewastransplanted,remainedunrepaired(Figure2).Furthermore,chemicalanalysisshowedthattheengineeredbonetissuescontainedahighlevelofcalcium(71.6%ofnormalbonetissue),suggestingthatengineeredbonecanreachahighlevelofmineralization.
Anotherexampleisengineeredbonerepairofweightbearingbonedefect[10].First,abonedefectatthediaphysisofthefemurwascreatedbyremovinga2.5cmlongbonesegment.Afterinternalfixationwithinterlockingnails,thedefectwasthenrepairedbyinsertingasimilarsizedcoralconstructthathasbeenseededwithinducedBMSCsandco-culturedfor3days.Asacontrol,thedefectwasrepairedbyacoralconstructalone.Radiographydemonstratedthatbonedefectwasmostlyrepairedbythenewlyformedbonetissueat3monthspost-repair.Thedefectswerecompletelyrepairedat6monthswitharadiodensitysimilartothatofadjacentnormalbone(Figure3).Thisresultwasalsoconfirmedbygrossobservationandhistologyoftherepairedbonetissueharvestedat8monthspost-repair.Thegoatswereabletostandandwalkfreelywithrepairedfemurwheninternalfixationwasremovedat8monthspost-repair.Incontrast,thecoralscaffoldincontrolgroupwascompletelyabsorbedatthesecondmonthwhenevaluatedradiologicallyandanon-osseousunionwasobservedat6months(Figure3).Theresultsofthesestudiesindicatethatbothflatandweight-bearinglongbonecanbegeneratedwithtissueengineeringapproaches.
Invitroengineeringofhumanearshapecartilage
Microtiadeformityisacommondiseaseinplasticsurgery,whichneedstobetreatedwithearreconstructionusingautologousribcartilage.Thefollowingisanexampletoshowthepotentialofusingengineeredcartilageforpatient’searreconstruction[11].
First,patientwholosthis/herearorwithadeformedearshouldbescannedwithlasertocollectgeometricdataapatient’snormalear,theinformationwasthenprocessedbyaCAD(computeraideddesign)systemtogeneratebothpositiveandnegativeimagedataofthenormalear,theresultantdataweretheninputintoaCAM(computeraidedmanufacture)systemtoprintamoldwith3Dstructureofanormalearinhalfsize.Then,polyglycolicacidunwovenfiberswereinsertedintothemoldandcoatedwith0.3%polylacticacidsolutionandthustogeneratearelativelysolidearshapescaffoldmaterial.Theresultingscaffoldwaslaserscannedtogeneratea3Dimage,whichcouldbedigitallycomparedwiththeoriginalear3Dimagetoanalyzethesimilarityin3Dstructure.AsrevealedinFigure4,theresultingear-shapedscaffoldachievedasimilaritylevelofabove97%comparedtothepositivemoldoforiginalearshape,indicatingthatthemoldfabricatedbyCAD/CAMisallowedtoaccuratelyfabricateascaffoldintoanear-shapemirror-symmetricaltothenormalear.
Afterwards,total50106cellsin1mlvolumewereevenlyseededontotheear-shapedscaffoldandinvitroculturedwithmediumchangeatregulartimeintervals.Interestingly,ahumanearcartilagecouldbegeneratedinvitroafter12weeksofculturewithgoodelasticity(Figure5).TheengineeredcartilagealsorevealedrelativelymaturehistologicalstructureofcartilagewithlacunastructureformationandstrongstainingforSafranin-OandcollagenIIasshowninFigure6.Moreimportantly,theinvitroformedhumanearshapedcartilagecouldreachamorphologicalsimilarityof82.6%tothepositiveearmold,indicatingthatthistechniquecannotonlygeneratecartilagetissueinvitrobutisalsoabletomaintainadesigned3Dtissuestructure.Curren