浅论石材幕墙工程施工质量.docx

上传人:b****3 文档编号:5322926 上传时间:2022-12-15 格式:DOCX 页数:12 大小:31.75KB
下载 相关 举报
浅论石材幕墙工程施工质量.docx_第1页
第1页 / 共12页
浅论石材幕墙工程施工质量.docx_第2页
第2页 / 共12页
浅论石材幕墙工程施工质量.docx_第3页
第3页 / 共12页
浅论石材幕墙工程施工质量.docx_第4页
第4页 / 共12页
浅论石材幕墙工程施工质量.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

浅论石材幕墙工程施工质量.docx

《浅论石材幕墙工程施工质量.docx》由会员分享,可在线阅读,更多相关《浅论石材幕墙工程施工质量.docx(12页珍藏版)》请在冰豆网上搜索。

浅论石材幕墙工程施工质量.docx

浅论石材幕墙工程施工质量

 

毕业论文

课题名称高性能混凝土的应用

系别土木工程系

专业建筑工程技术

班级09级建三班

姓名张留营学号2009082118

指导老师吴亚丽

 

目录

论文摘要2

一、高性能混凝土产生的背景和研究现状4

2、高性能混凝土的性能研究和应用分析7

三、高性能混凝土质量与施工控制11

结论15

论文摘要

随着我国改革开放和现代化进程的加快,我国的建设规模正日益增大,如何保证建筑工程质量的同时也能使工程能长久的安全使用下去,日益受到各级政府和社会各界的广泛关注。

在众多的土木工程建设中,混凝土的应用面之广,使用次数之多是很少见的。

尤其中近年来,一种较新的混凝土技术正在快速发展并且运用到许多实际工程项目中,那就是高性能混凝土。

高性能混凝土是近期混凝土技术发展的主要方向,这种采用优质材料配制,便于浇捣、不离析、力学性能稳定、早期强度高、具有韧性和体积稳定性等性能的耐久的混凝土,特别适用于特别是在桥梁、海港建筑、高层建筑、路桥以及暴露在严酷环境中的建筑结构。

本文探讨了高性能混凝土原材料的基本要求和技术途径,主要从原材料的选择等方面进行了阐述。

通过掺入矿物微细粉和高性能化学外加剂的技术途径来配制高性能混凝土,既可改善混凝土的性能,又能降低生产成本,有利于高性能混凝土的推广应用。

高性能混凝土发展的历史背景及目前国内外的研究现状,阐明了高性能混凝土的特性,列举了高性能混凝土在国内外研究应用中的重要成果,并对其发展趋势作出展望。

随着我国建筑向高层化、大型化、现代化的发展,HPC必将成为新世纪的重要建筑工程材料。

关键词:

高性能混凝土发展应用质量施工控制

 

高性能混凝土的应用

张留营

(开封大学建筑工程技术)

从20世纪以来,混凝土就己成为房屋建筑、桥梁、水利、公路等现代工程结构首选材料,混凝土作为土木工程中最大宗的人造材料,其用量巨大。

据统计,当今我国每年混凝土用量约109立方米,并且随着我国近年来工业化、城市化进程的加快,其用量将继续快速增长。

我国在50年代兴建的大坝有许多已经成为陷入危境的“病坝”:

截至1997年年底,驰名中外的安徽佛子岭、梅山、响洪甸三座老坝共亏损1亿多元,仅佛子岭1997年一年就亏损1700万元,而在修补佛子岭的设计预算中,只修两个拱就需要1400万元。

1985年水电部调查报告表明:

我国水工混凝土的冻融破坏在“三北”地区的工程中占100%,这些大型混凝土工程一般运行也就30年左右,有的甚至不到20年,如云峰宽缝重力坝,运行19年后下游面受破损显著,表面剥蚀露出骨料,总面积约8500平方米;而丰满重力坝自从运行后就年年维修,运行33年后,上、下游面及尾水闸墩破损明显,表面露出钢筋,冻害严重,致使坝顶抬高10余厘米。

港口码头工程,特别是接触海水工程,其受冻破坏的现象更为严重,破坏的结构主要是防波堤、胸墙、码头、栈桥等,如天津新港的防波堤,采用普通混凝土的部分,经十几年左右的运行,就被冻融破坏以致不能发挥作用了。

地处寒冷地区的水电站、工业厂房、铁道桥涵、交通部门的混凝土路面、桥梁及市政工程等的混凝土,接触雨水、蒸汽的部分,排水系统及受渗透水作用的部分,都受到了冻融破坏,如通辽发电厂的冷却塔,筒壁混凝土由于渗水致使混凝土遭受冻融破坏而发生表皮剥落、空鼓等现象。

为使上述及类似工程继续发挥作用,各部门每年都要耗巨资加以维修,根据以往经验,混凝土工程安全使用期和维护使用期的比例为1:

3~10,但维护使用期的维修费用却高达建设费用的1~3倍。

 为此,人们对混凝土耐久性的追求已越来越主动和自觉,甚至超过了过去对混凝土强度的追求,于是以高耐久性为核心内容的高性能混凝土便应运而生了。

高性能混凝土具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程中显示出其独特的优越性,在工程安全使用期、经济合理性、环境条件的适应性等方面产生了明显的效益,因此被各国学者所接受,被认为是今后混凝土技术的发展方向。

一、高性能混凝土产生的背景和研究现状

(一)背景

传统的混凝土已有近200年的历史,是近代使用最广的建筑材料,也是当前最大宗的人造材料。

据不完全统计,世界水泥产量已超过13亿吨,折合混凝土不少于40亿立方米。

水泥混凝土与其他常用建筑材料如钢铁、木材、塑料等相比,生产能耗低、原料来源广、工艺简单,因而生产成本低,并具有耐久、防火、适应性强、应用方便等特点。

近百年来,混凝土的发展趋势是强度不断提高。

30年代平均为10MPa,50年代约为20MPa,60年代约为30MPa,70年代已上升到40MPa,发达国家越来越多地使用50MPa以上的高强混凝土。

当代大跨、高层、海洋、军事工程结构的发展对混凝土提出的更高的要求;处在恶劣环境下既有建筑不断劣化、退化导致过早失效、退役甚至出现恶性事故造成巨大损失的严重后果;原材料生产、开采造成的生态环境恶化以及砂石料枯竭、资源短缺严重影响进一步发展的严酷现实。

这就要求混凝土不断提高以耐久性为重点的各项性能,多使用天然材料及工业废渣保护环境,走可持续发展的道路,高性能混凝土就是在这种背景下出现并逐步完善与发展的。

混凝土作为用量最大的人造材料,不能不考虑它的使用对生态环境的影响。

传统混凝土的原材料都来自天然资源。

每用1t水泥,大概需要0.6t以上的洁净水,2t砂、3t以上的石子;每生产1t硅酸盐水泥约需1.5t石灰石和大量燃煤与电能,并排放1tCO2,而大气中CO2浓度增加是造成地球温室效应的原因之一。

尽管与钢材、铝材、塑料等其它建筑材料相比,生产混凝土所消耗的能源和造成的污染相对较小或小得多,混凝土本身也是一种洁净材料,但由于它的用量庞大,过度开采矿石和砂、石骨料已在不少地方造成资源破坏并严重影响环境和天然景观。

有些大城市现已难以获得质量合格的砂石。

另一方面,由于混凝土过早劣化,如何处置费旧工程拆除后的混凝土垃圾也给环境带来威胁。

因此,未来的混凝土必须从根本上减少水泥用量,必须更多地利用各种工业废渣作为其原材料;必须充分考虑废弃混凝土的再生利用,未来的混凝土必须是高性能的,尤其是耐久的。

耐久和高强都意味着节约资源。

“高性能混凝土”正是在这种背景下产生的。

(二)研究现状及发展方向

高性能混凝土是近期混凝土技术发展的主要方向,高性能混凝土是具有某些性能要求的匀质混凝土,必须采用严格的施工工艺,采用优质材料配制,便于浇捣、不离析、力学性能稳定、早期强度高、具有韧性和体积稳定性等性能的耐久的混凝土,特别适用于高层建筑、桥梁以及暴露在严酷环境中的建筑结构。

由于高性能混凝土具有综合的优异技术特性,引起了国内外材料界与工程界的广泛重视与关注。

十多年来,世界上许多国家相继投入了大量的人力、财力、物力进行该项研究与开发应用,使高性能混凝土技术取得了很大的进展,在原料的选择、配合比设计、物理力学性能、耐久性、工作性、结构性能以至应用技术等方面都取得了既有理论基础又有实用价值的科技成果。

高性能混凝土为一种能满足特殊性能和特殊用途的混凝土,仅采用常规材料、普通拌和、浇筑和养护等措施达不到高性能混凝土的要求,而是必须通过提高浇筑、捣实的方法来提高混凝土的长期力学性能、初期强度、刚度和体积稳定性以及延长其在恶劣环境下的使用寿命。

高性能混凝土往往被人们将其与高强度混凝土联系起来,其实质高性能混凝土不仅仅是高强度,而且具有相当高的刚度、弹性模量和耐久性,普遍混凝土不能长久作用,如许多混凝土车路在不该开裂的地方开裂或者由于冰冻和融化而剥落;许多桥面遭受严重破坏;许多混凝土桥梁在地震中倒塌。

因此,只有采用高性能混凝土才有可能避免这些不该发生的事故。

进入20世纪90后代以后,混凝土结构耐久性设计方法成为土木工程领域中的研究重点。

针对不同环境类别的侵蚀作用,提出材料性能劣化的理论或经验模式,并据此估算结构的使用寿命,成为发展和研究耐久性设计方法的主流。

目前,高性能混凝土的发展有以下几个方向:

1.绿色高性能混凝土

水泥混凝土是当代最大宗的人造材料,对资源、能源的消耗和对环境的破坏十分巨大,与可持续发展的要求背道而驰。

绿色高性能混凝土研究和应用较多的是粉煤灰混凝土,粉煤灰混凝土与基准混凝土相比,大大提高了新拌混凝土的工作性能,明显降低混凝土硬化阶段的水化热,提高混凝土强度特别是后期强度。

而且,节约水泥,减少环境污染,成为绿色高性能混凝土的代表性材料。

2.超高性能混凝土

超高性能混凝土,如活性粉末混凝土(ReactivePowdercon-crete,RPC),其特点是高强度,抗压强度高达300MPa,且具有高密实性,已在军事、核电站等特殊工程中成功应用。

3.智能混凝土

智能混凝土是在混凝土原有的组分基础上复合智能型组分,使混凝土材料具有自感知、自适应、自修复特性的多功能材料,对环境变化具有感知和控制的功能。

随着损伤自诊断混凝土、温度自调节混凝土、仿生自愈合混凝土等一系列机敏混凝土的出现,为智能混凝土的研究、发展和智能混凝土结构的研究应用奠定了基础。

(三)高性能混凝土的发展前景

随着HPC的开发和应用,建筑对生态环境产生的影响正引起社会的关注。

建筑物在建造和运行的过程中需消耗大量的自然资源和能源,并对环境产生不同程度的影响。

有专家指出,作为建筑工业主要原料的水泥,实际上是一种不可持续发展的产品。

因此,高性能混凝土的技术核心是在限制水泥用量以获得混凝土高性能的同时,坚持其可持续性的发展原则。

21世纪前后,吴中伟等提出了绿色混凝土的概念,在高性能混凝土的基础上增加了三个含义:

1.节约资源、能源;

2.不破坏环境,更有利于环境;

3.可持续发展,

大力开展绿色高性能混凝土的研究和应用高性能混凝土具有普通混凝土无法比拟的优良性能,对混凝土的发展将起重要作用,并为HPC的发展指明了非常明确的方向。

我国近几年来在大力建设高速铁路,正在建设的武广客运专线、广珠城际轨道等十一条高速铁路工程设计使用年限长达100年,普通混凝土已不能满足耐久性要求,因此高性能混凝土在高速铁路建设中开始了尝试性应用。

因无具体标准,我国铁道部科学技术司于2005年发布了《客运专线高性能混凝土暂行技术条件》作为客运专线高性能混凝土质量的参考依据,技术条件中对高性能混凝土的技术指标、原材料质量都提出了一些要求,成为国内工程建设中第一个高性能混凝土执行依据。

这对我国的铁路建设中高性能混凝土的应用起到了一定的作用。

二、高性能混凝土的性能研究和应用分析

(一)高性能混凝土的概念

所谓高强度混凝土是指标号不低于C60(混凝土轴心抗压设计强度fc=27.5MPa)的混凝土,且用优质骨料和强度不低于42.5级的水泥与较低水灰比在强烈振捣密实作用下制取的混凝土。

高强混凝土具有高强度、高耐久性、高工作性、高流动性等多方面的优越性能。

1.由于高强混凝土的耐久性(包括混凝土稳定性、抗渗透性、抗冻性、抗化学侵蚀性、抗炭化性)优于普通混凝土,在各种严酷环境下使用的大体积混凝土结构如跨海大桥、海底隧道、高层建筑等,用高性能混凝土来代替普通混凝土,不仅可以提高工程使用寿命,而且具有显著的经济效益。

2.高强混凝土强度大且变形较小,从而使构件的刚度得以提高,大大改善了建筑物的变形性能。

3.虽然高强混凝土在成本上比普通混凝土要高一些,但由于减小了截面尺寸,减轻了结构自重,降低了钢筋用量,减轻了地基负荷,这对自重占荷载主要部分的建筑具有特别重要的意义。

在一般情况下,混凝土强度等级从C30提高到C60,对受压构件可节省混凝土30%~40%,受弯构件可节省混凝土10%~20%,如此大幅度地节约建筑材料,从而降低工程施工成本,以年产15亿立方米混凝土中有20%采用高性能混凝土,商品混凝土350元/立方米均价计算,从中可节约资金为210亿元,获得巨大的直接经济效益;同时由于梁柱截面减小,不但改变了建筑上肥梁胖柱的不美观问题,而且可增加使用面积和有效空间,因而可获得较大的间接经济效益。

在建设阶段通过节约混凝土用量,可以节约土地、煤、水、矿石、砂等能源和资源的消耗量,从而减少有害气体和废渣的排放,使用阶段可减少养护维修费用,实现节能,带来可观的社会效益。

以混凝土结构物的耐久性为首要技术指标的高性能混凝土由于其具有的优越性,目前在不少的重要工程中被采用,并在高层建筑、大跨度桥梁、海上平台等工程中显示出其独特的优越性,

我国的吴中伟院士给出高性能混凝土的如下定义:

高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上,采用现代混凝土技术,选用优质材料,在严格质量管理条件下制成的;除了水泥、水、骨料外,必须掺加足够数量的掺合料和高效外加剂,且水胶比较低;针对不同用途要求,高性能混凝土对下列性能有重点地予以保证:

耐久性、工作性、适用性、强度、体积稳定性及经济性,但应以耐久性作为设计的主要指标。

黄大能教授认为:

高性能混凝土应具有适当的高强性能,但必须有良好的耐久性,能抵抗各种化学侵蚀作用,体积稳定性好;综合以上观点,我们可以看出,大家公认高性能混凝土应具有高耐久性。

本文章也持类似的观点,即高性能混凝土最核心内容是优异的耐久性,也就是说高性能混凝土首先应具备高耐久性,同时兼有良好的工作性和适宜的强度。

此处“适宜的强度”并非指高强度,而是指满足工程设计及使用要求的具有足够可靠度的强度,即高性能混凝土未必要求很高的强度指标。

因为大量使用的钢筋混凝土建筑物,如低层和多层房屋及高层房屋的上层部分,又如海工、水工混凝土,尤其是一些大体积混凝土,对强度要求并不高(例如C30左右即足矣),但对耐久性要求都很高,如日本明石海峡大桥2号和3号大体积柱基,91d设计强度只有17MPa(配制强度为24MPa,实测91d强度为42MPa),但为了保证这一20世纪全世界最长悬索桥的安全性和使用寿命,混凝土是按耐久性设计的,属于高性能混凝土。

过去忽视耐久性的惨痛教训和未来混凝土工程可持续发展战略的提出,都告诫我们不论任何强度等级的混凝土,要求其具有足够的耐久性应该总是合理的。

过去人们设计混凝土只单一以强度作为设计指标,导致很长时期以来人们一直将注意力放在了混凝土强度的不断提高上而忽视了耐久性,这一趋势在高性能混凝土提出之后发生了转变。

总之,高性能混凝土因其优异的综合性能必将逐步取代过去的普通混凝土,可以预想,21世纪将成为高性能混凝土的时代。

(二)高性能混凝土的性能与普通混凝土相比,高性能混凝土具有如下独特的性能

1.耐久性

高效减水剂和矿物质超细粉的配合使用,能够有效的减少用水量,减少混凝土内部的空隙,能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。

2.工作性

坍落度是评价混凝土工作性的主要指标,HPC的坍落度控制功能好,在振捣的过程中,高性能混凝土粘性大,粗骨料的下沉速度慢,在相同振动时间内,下沉距离短,稳定性和均匀性好。

同时,由于高性能混凝土的水灰比低,自由水少,且掺入超细粉,基本上无泌水,其水泥浆的粘性大,很少产生离析的现象。

3.力学性能

由于混凝土是一种非均质材料,强度受诸多因素的影响,水灰比是影响混凝土强度的主要因素,对于普通混凝土,随着水灰比的降低,混凝土的抗压强度增大,高性能混凝土中的高效减水剂对水泥的分散能力强、减水率高,可大幅度降低混凝土单方用水量。

在高性能混凝土中掺入矿物超细粉可以填充水泥颗粒之间的空隙,改善界面结构,提高混凝土的密实度,提高强度。

4.体积稳定性

高性能混凝土具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。

5.经济性

混凝土较高的强度、良好的耐久性和工艺性都能使其具有良好的经济性。

高性能混凝土良好的耐久性可以减少结构的维修费用,延长结构的使用寿命,收到良好的经济效益;高性能混凝土的高强度可以减少构件尺寸,减小自重,增加使用空间;HPC良好的工作性可以减少工人工作强度,加快施工速度,减少成本。

前苏联学者研究发现用C110~C137的高性能混凝土替代C40~C60的混凝土,可以节约15%~25%的钢材和30%~70%的水泥。

虽然HPC本身的价格偏高,但是其优异的性能使其具有了良好的经济性。

概括起来说,高性能混凝土就是能更好地满足结构功能要求和施工工艺要求的混凝土,能最大限度地延长混凝土结构的使用年限,降低工程造价。

(三)高性能混凝土发展和应用中所面临的问题

在高性能混凝土的发展过程中,有许多材料与工程方面的难题需要解决,同时施工中还要解决一系列的技术问题。

1.低水灰比,大坍落度

高性能混凝土一般要求低水灰比,水灰比一般都不大于0.4(水灰比很低约为0.4时,水灰比变化很小就能使混凝土强度不成比例地提高),但由于混凝土在低水灰比的情况下,坍落度很小,甚至没有坍落度,其成型和捣实都很困难,无法在现浇混凝土施工中应用。

因此高性能混凝土拌合物的工作性比强度还要重要,是保证混凝土现浇质量的关键,如果用坍落度来表示,则其坍落度大于180mm,要求免振时,坍落度大于250mm,同时该拌合物应具有体积稳定、不离析、不泌水等特性。

2.坍落度损失问题

高性能混凝土的坍落度在掺加超塑化剂后的流动度可大大提高,可以由初始坍落度5cm增加到20cm,但这种大坍落度只能保持十几分钟,此后坍落度逐渐减少,至1h左右便可能减少到初始坍落度,这种超塑化剂只能在工地添加拌制成流动混凝土,否则会因坍落度减少给工程施工带来困难并影响工程质量。

而现代城市混凝土施工一般采用商品混凝土,混凝土从搅拌站运送至工地需要较长的时间,混凝土在运输的过程中坍落度随时间的增加而减少,从而增加了高强混凝土施工难度。

3.混凝土足够的流动性问题

高性能混凝土的特点是流动性大、水灰比小,为保证混凝土具有足够的流动性,就要求有较大的胶凝材料总用量,但随着浆集比的增大,混凝土的弹性模量会有所下降,混凝土的收缩也会有所增加。

从耐久性的角度来看,必须有足够的浆体浓度和数量,得到良好的工作,才能保证混凝土的耐久性。

当胶凝材料用料太小时,不可能保证良好的工作性,使混凝土离析、分层,硬化后混凝土的薄弱界面数量将急剧增多,最终大大削弱混凝土抵抗腐蚀性介质侵蚀的能力。

因此,没有足够的胶凝材料总用量,就不可能使混凝土耐久。

很好地解决混凝土的流动性问题,就能保证混凝土的流动性问题,就能保证混凝土的可泵性与耐久性。

高性能混凝土的原材料方面,我国水泥质量不稳定,离散性大;在骨料方面,粗骨料质量低劣,含泥量大,级配较差,细骨料细度模数不合要求;在外加剂和外掺料的选择上,尚缺乏充分的适用性的研究。

在高性能混凝土的施工过程中,施工人员的技术水平有限,养护措施不到位,使HPC的密实性和质量不稳定;在高性能混凝土的耐久性方面,由于高性能混凝土微管中水分的蒸发与凝聚而产生的收缩,使混凝土表面产生裂缝,这对HPC的抗碳化、抗冻融循环作用以及抗氯离子扩散等都是不利的,高性能混凝土的水泥用量高,水灰比低,硬化后长期处于水中时,水分通过微管扩散到内部,未水化的水泥粒子进一步水化,产生微膨胀也会使混凝土表面产生裂缝,为各种有害介质渗透提供通道,给氯离子侵入、碱骨料反应的发生和钢筋锈蚀创造可能;在高性能混凝土的设计方面,由于高性能混凝土的后期强度增长不及普通混凝土,而且脆性大,需要特别注意。

同时,在高性能混凝土的研究方面,现在的研究以实验室研究为主,但是实验室的情况与实际工况相差较大,这不利于今后高性能混凝土的推广应用。

三、高性能混凝土质量与施工控制

高性能混凝土与普通混凝土使用基本相同的原材料(如水泥、砂、石),同时必须使用外加剂和矿物细掺料。

但由于高性能的要求和配置特点,原材料对普通混凝土影响不明显的因素,对高性能混凝土就可能影响显著,高性能混凝土对材料的要求如下:

(一)高性能混凝土原材料及其选用

1.细集料

宜选用质地坚硬、洁净、级配良好的天然中、粗河砂,其质量要求应符合普通混凝土用砂石标准中的规定。

砂的粗细程度对混凝土强度有明显的影响,一般情况下,砂子越粗,混凝土的强度越高。

配制C50~C80的混凝土用砂宜选用细度模数大于2.3的中砂,对于C80~C100的混凝土用砂宜选用细度模数大于2.6的中砂或粗砂。

2.粗集料

高性能混凝土必须选用强度高、吸水率低、级配良好的粗集料。

宜选择表面粗糙、外形有棱角、针片状含量低的硬质砂岩、石灰岩、花岗岩、玄武岩碎石,级配符合规范要求。

由于高性能混凝土要求强度较高,就必须使粗集料具有足够高的强度,一般粗集料强度应为混凝土强度的115倍~210倍或控制压碎指标值>10﹪。

最大粒径不应大于25mm,以10mm~20mm为佳,这是因为,较小粒径的粗集料,其内部产生缺陷的几率减小,与砂浆的粘结面积增大,且界面受力较均匀。

另外,粗集料还应注意集料的粒型、级配和岩石种类,一般采取连续级配,其中尤以级配良好、表面粗糙的石灰岩碎石为最好。

粗集料的线膨胀系数要尽可能小,这样能大大减小温度应力,从而提高混凝土的体积稳定性。

3.细掺合料

配制高性能混凝土时,掺入活性细掺合料可以使水泥浆的流动性大为改善,空隙得到充分填充,使硬化后的水泥石强度有所提高。

更重要的是,加入活性细掺合料改善了混凝土中水泥石与骨料的界面结构,使混凝土的强度、抗渗性与耐久性均得到提高。

活性细掺合料是高性能混凝土必用的组成材料。

在高性能混凝土中常用的活性细掺合料有硅粉(SF)、磨细矿渣粉(BFS)、粉煤灰(FA)、天然沸石粉(NZ)等。

粉煤灰是火电厂燃煤锅炉排出的烟道灰,它能有效提高混凝土的抗渗性,显著改善混凝土拌合物的工作性,大掺量粉煤灰混凝土还对环境保护和节约资源有重要意义。

配制高性能混凝土的粉煤灰宜用含碳量低、细度低、需水量低的优质粉煤灰。

矿渣是高炉炼铁排出的熔融矿渣在高温状态下迅速水淬冷却而成的,用于高性能混凝土的磨细矿渣细度大于水泥,能提高混凝土的工作性和耐久性。

硅粉是电炉法生产硅铁合金所排放的烟道灰,二氧化硅含量大于90﹪,平均粒径约011μm,比表面积>20000㎡/kg,借助大剂量高效减水剂和强力搅拌作用,可以填充到水泥或其他掺合料的间隙中去,并且具有很高的活性,在各种掺合料中对混凝土的增强作用最为显著,是国际上制备超高强混凝土最通用的超细活性掺合料。

4.减水剂及缓凝剂

由于高性能混凝土具有较高的强度,且一般混凝土拌合物的坍落度较大(15~20㎝左右),在低水胶比(一般<0.35)一般的情况下,要使混凝土具有较大的坍落度,就必须使用高效减水剂,且其减水率宜在20﹪以上。

有时为减少混凝土坍落度的损失,在减水剂内还宜掺有缓凝的成份。

此外,由于高性能混凝土水胶比低,水泥颗粒间距小,能进人溶液的离子数量也少,因此减水剂对水泥的适应性表现更为敏感。

因大部分高性能混凝土施工时采用泵送,故掺减水剂后混凝土拌合物的坍落度损失不能太快太大,否则影响泵送。

5.矿物掺合料

(1)粉煤灰,粉煤灰是燃烧煤粉的锅炉烟气中收集到的细微粉末,又称“飞灰”(FlyAsh),其颗粒多呈球形,表面光滑。

大量的实践证明:

掺用粉煤灰的混凝土,其长期性能可得到大幅度的改善,对延长构筑物的使用寿命有重要意义。

粉煤灰在混凝土中的主要作用包括以下几个方面:

①填充骨料颗粒的空隙并包裹它们形成润滑层,产生“滚珠润滑”效应;②对水泥颗粒起物理分散作用,使其分布得更均匀;③粉煤灰和聚集在骨料颗粒周围的氢氧化钙结晶发生火山灰反应,生成具有胶凝性质的产物,加强了薄弱的过渡区,对改善混凝土的各项性能有显著作用;④粉煤灰延缓了水化速度,减小混凝土因水化热引起的温升,对防止混凝土产生温度裂缝十分有利;⑤可减小混凝土温度开裂的危险,同时由于加快了火山灰反应,还可提高28d强度。

值得注意的是,粉煤灰的水泥取代率对

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1