北师版七年级数学下册教案.docx
《北师版七年级数学下册教案.docx》由会员分享,可在线阅读,更多相关《北师版七年级数学下册教案.docx(8页珍藏版)》请在冰豆网上搜索。
北师版七年级数学下册教案
北师版七年级数学下册教案
借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
一起看看北师版七年级数学下册教案!
欢迎查阅!
北师版七年级数学下册教案1
●教学目标
1.知识与能力目标:
借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:
通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:
通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点
教学重点:
绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:
绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备
多媒体课件
●教学过程
一、创设问题情境
1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作?
__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?
在数轴上的A、B两点又有什么特征?
(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?
表示-和的点呢?
小结:
在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:
在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念?
———绝对值。
二、建立数学模型
1、绝对值的概念
(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)
绝对值的几何定义:
一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:
-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
注意:
①与原点的关系②是个距离的概念
2..练习1:
请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。
[温度上升了5度,用+5表示的话,那么下降了5度,就用-5
表示,如果我们不去考虑它的意义(即:
上升还是下降),只考虑数量(即:
温度)的变化,我们可以说:
温度的变化都是5度。
银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:
存入还是取出),只考虑数量的多少,我们可以说:
金额都是100元。
]
(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。
)
三、应用深化知识
1、例题求解
例1、求下列各数的绝对值
-1.6,,0,-10,+10
2、根据上述题目,让学生归纳总结绝对值的特点。
(教师进行补充小结)
特点:
1、一个正数的绝对值是它本身
2、一个负数的绝对值是它的相反数
3、零的绝对值是零
4、互为相反数的两个数的绝对值相等
3.出示题目
(1)-3的符号是_______,绝对值是______;
(2)+3的符号是_______,绝对值是______;
(3)-6.5的符号是_______,绝对值是______;
(4)+6.5的符号是_______,绝对值是______;
学生口答。
师:
上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。
现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。
那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?
5、练习3:
回答下列问题
①一个数的绝对值是它本身,这个数是什么数?
②一个数的绝对值是它的相反数,这个数是什么数?
③一个数的绝对值一定是正数吗?
④一个数的绝对值不可能是负数,对吗?
⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?
(由学生口答完成,进一步巩固绝对值的概念)
6、例2.求绝对值等于4的数
(让学生考虑这样的数有几个,是怎样得出这个结果的呢?
对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。
)
分析:
①从数字上分析
∵|+4|=4,|-4|=4∴绝对值等于4的数是+4和-4画一个数轴(如下图)
②从几何意义上分析,画一个数轴(如下图)
因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M
所以绝对值等于4的数是+4和-4.
6、练习:
做书上12页课内练习1、2两题。
四、归纳小结
1、本节课我们学习了什么知识?
2、你觉得本节课有什么收获?
3、由学生自行总结在自主探究,合作学习中的体会。
五、课后作业
1、让学生去寻找一些生活中只考虑绝对值的实际例子。
2、课本15页的作业题。
北师版七年级数学下册教案2
一、教学目标
1、知识与技能
(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个
负数的大小。
(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
2、过程与方法目标:
(1)、通过运用“|
|”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学
生抽象思维的目的
(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过
观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;(3)、通过对“做一做”“议一议”
“试一试”的交流和讨论,培养学生有条理地用语言
表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。
通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:
1、教师检查组长学案学习情况,组长检查组员学案学习情况。
(约5分钟)2.在组长的组织下进行讨论、交流。
(约5分钟)
3、小组分任务展示。
(约25分钟)4、达标检测。
(约5分钟)5、总结(约5分钟)
四、小组对学案进行分任务展示
(一)、温故知新:
前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?
数轴的三要素什么?
(二)小组合作交流,探究新知
1、观察下图,回答问题:
(五组完成)
大象距原点多远?
两只小狗分别距原点多远?
归纳:
在数轴上,一个数所对应的点与原点的距离叫做这个数的。
一个数a的绝对值记作:
.
4的绝对值记作,它表示在上与的距离,所以|4|=。
2、做一做:
(1)、求下列各数的绝对值:
(四组完成)-1.5,0,-7,2
(2)、求下列各组数的绝对值:
(一组完成)
(1)4,-4;
(2)0.8,-0.8;
从上面的结果你发现了什么?
3、议一议:
(八组完成)
(1)|+2|=,
1=,|+8.2|=;5
(2)|-3|=,|-0.2|=,|-8|=.(3)|0|=;
你能从中发现什么规律?
小结:
正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:
(二组完成)
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。
)
5:
做一做:
(三组完成)
1、
(1)在数轴上表示下列各数,并比较它们的大小:
-3,-1
(2)求出
(1)中各数的绝对值,并比较它们的大小
(3)你发现了什么?
2、比较下列每组数的大小。
(1)-1和–5;(五组完成)
(2)?
(3)-8和-3(七组完成)
5和-2.7(六组完成)6五、达标检测:
1:
填空:
绝对值是10的数有()
|+15|=()|–4|=()
|0|=()|4|=()2:
判断
(1)、绝对值最小的数是0。
()
(2)、一个数的绝对值一定是正数。
()
(3)、一个数的绝对值不可能是负数。
()
(4)、互为相反数的两个数,它们的绝对值一定相等。
()(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。
()
六、总结:
1绝对值:
在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
2.绝对值的性质:
正数的绝对值是它本身;
负数的绝对值是它的相反数;0的绝对值是0.
因为正数可用a0表示,负数可用a0表示,所以上述三条可表述成:
(1)如果a0,那么|a|=a
(2)如果a0,那么|a|=-a(3)如果a=0,那么|a|=0
3、会利用绝对值比较两个负数的大小:
两个负数比较大小,绝对值大的反而小.
七、布置作业
P50页,知识技能第1,2题.
北师版七年级数学下册教案3
一、学习与导学目标:
知识与技能:
会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;
过程与方法:
经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;
情感态度:
通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。
二、学程与导程活动:
A、创设情境(幻灯片或挂图)
1、两辆汽车,其一向东行驶10km,另一向西行驶8km。
为了区别,可规定向东行驶为正,则分别记作+10km和-8km。
但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。
此时,行驶路程则分别记作10km和8km。
再如测量误差问题、排球重量谁更接近标准问题……
2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。
B、学习概念:
1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute
value),记作︱a︱(幻灯片)。
因此,上述+10,-8的绝对值分别是10,8。
如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。
(互为相反数的两个数的绝对值相同)
2、尝试回答
(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;
(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;
(3)︱0︱=。
(幻灯片)
思考:
你能从中发现什么规律?
引导学生得出:
(幻灯片)
性质:
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
零的绝对值是零。
如果用字母a表示有理数,上述性质可表述为:
当a是正数时,︱a︱=a;
当a是负数时,︱a︱=-a;
当a=0时,︱a︱=0。
解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:
在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?
3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。
显然,结合问题的实际意义不难得到:
-4-3-2-1012……。
因此,在数轴上你有何发现?
生讨论后发现:
从左往右表示的数越来越大。
再找几个量试试是否如此?
这些数的绝对值的大小如何?
(可利用P19/6,8为素材)
通过以上探究活动得到:
正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小。
4、师生活动比较下列各对数的大小:
P17例,P18练习。
5、师生小结归纳(幻灯片)
三、笔记与板书提纲:
1、幻灯片
2、师生板演练习P15/1
四、练习与拓展选题:
P19/4,5,9,10
北师版七年级数学下册教案