中考真题三角函数综合应用专题复习.docx
《中考真题三角函数综合应用专题复习.docx》由会员分享,可在线阅读,更多相关《中考真题三角函数综合应用专题复习.docx(5页珍藏版)》请在冰豆网上搜索。
中考真题三角函数综合应用专题复习
历届《三角函数综合题》中考真题训练1.(2017?
贵阳)贵阳市某消防支队在一幢居民楼前进行消防演习,以以下图,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻高升云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精准到1°).
2.(2017?
营口)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后抵达B处,这时码头C恰幸亏船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的近来距离.(结果精准到0.1海里,参照数据≈1.41,≈1.73)
第1页(共10页)
3.(2017?
黄冈)在黄冈长江大桥的东端一处空地上,有一块矩形的口号牌ABCD(以以下图),已知口号牌的高AB=5m,在地面的点E处,测得口号牌点A的仰角为30°,在地面的点F处,测得口号牌点A的仰角为75°,且点E,F,B,C在同素来线上,求点E与点F之间的距离.(计算结
果精准到0.1米,参照数据:
≈1.41,≈1.73)
(2017?
随州)风电已成为我国继煤电、水电此后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假定你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米抵达山底G处,在山顶B处发现正好一叶片抵达最高地址,此时测得叶片的顶端D(D、C、H在同素来线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连结处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参照数据:
tan55°≈,1.4tan35°≈,0.7sin55°≈,0.8sin35°≈)0.6
第2页(共10页)
5.(2017?
桂林)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完满的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请依照图中数据,求出线段BE和CD的长.(sin37°≈,0.cos3760°≈,0.tan3780°≈,0.结75果保留小数点后一位)6(2018?
青羊区模拟)如图,小明今年国庆节到青城山游玩,乘坐缆车,当爬山缆车的吊箱经过点A抵达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16,°当缆车连续由点B抵达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42,°求缆车从点A到点D垂直上升的距离.(结果保留整数)(参照数据:
sin16°≈,0.cos1627°≈,0.77sin42°≈,0.66cos42°≈0).74
第3页(共10页)
7.(2017?
呼和浩特)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m的速度直线遨游,10分钟后抵达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特别角的三角函数和根式表示即可)
(2017?
张家界)位于张家界中心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精准到0.1米,参照数据:
sin70.5°≈,°≈,0.334tan70.5°≈2.)824
第4页(共10页)
9.(2017?
长春)如图,某商铺营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精准到0.1米)(参照数据:
sin31=0°.515,cos31=0°.857,tan31=0°.60)10(2016?
常德)南海是我国的南大门,以以下图,某天我国一艘海监执法船在南海海疆正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便快速沿北偏东75°的方向前去督查巡逻,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前去督查巡逻的过程中行驶了多少海里(最后结果保留整数)?
(参照数据:
cos75=0°.2588,sin75=0°.9659,tan75=3°.732,=1.732,=1.414)
第5页(共10页)
11.(2014?
黔东南州)黔东南州某校九年级某班睁开数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精准到0.1,参照数据:
≈1.41,≈1.73)
12.(2012?
黔东南州)如图,一艘货轮在A处发现其北偏东45°方向有一海盗船,立刻向位于正东方向B处的海警舰发出求救信号,并向海警舰靠拢,海警舰立刻沿正西方向对货轮推行救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60°方向的C处.
(1)求海盗船所在C处距货轮航线AB的距离.
(2)若货轮以45海里/时的速度在A处沿正东方向海警舰靠拢,海盗以50海里/时的速度由C处沿正南方向对货轮进行拦截,问海警舰的速度应为多少时才能抢在海盗从前去救货轮?
(结果保留根号)
第6页(共10页)
参照答案及分析1.(2017?
贵阳)解:
延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=,∴CE=AE?
tan60°=15米.在Rt△ABE中,tan∠BAE==,∴∠BAE≈71°.答:
第二次施救时云梯与水平线的夹角∠BAD约为71°.【议论】本题察看认识直角三角形的应用,第一结构直角三角形,再运用三角函数的定义解题,结构出直角三角形是解题的要点.2.(2017?
营口)【分析】过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:
船在航行过程中与码头C的近来距离是CE,依照∠DAB=30°,AB=20,进而可求出BD、AD的长度,进而可求出CE的长度.【解答】解:
过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:
船在航行过程中与码头C的近来距离是CE,AB=30×=20,∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=AB=10,由勾股定理可知:
AD=10BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=10+10∵∠DAB=30°,CE=AC=5+5≈13.7答:
船在航行过程中与码头C的近来距离是13.7海里【议论】本题察看解三角形的应用,解题的要点是熟练运用锐角三角函数以及勾股定理,本题属于中等题型.3.(2017?
黄冈)【分析】如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x=10,解方程即可.【解答】解:
如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,∴AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,
第7页(共
EF=2x=10﹣10≈7.3米,答:
E与点F之间的距离为7.3米.【议论】本题察看解直角三角形的应用﹣仰角俯角问题、锐角三角函数、等腰直角三角形的性质、一元一次方程等知识,解题的要点是学会增加常用协助线,建立方程解决问题.(2017?
随州)【分析】作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtan∠CAH=tan55°?
x知CE=CH﹣EH=tan55°﹣?
x10,依照BE=DE可得对于x的方程,解之可得.【解答】解:
如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?
x,∴CE=CH﹣EH=tan55°﹣?
x10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°﹣?
x10+35,解得:
x≈45,CH=tan55°?
x=1.4×345=6,答:
塔杆CH的高为63米.【议论】本题察看认识直角三角形的应用,解答本题要修业生能借助仰角结构直角三角形并解直角三角形.5.(2017?
桂林)【分析】在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF的长,进而可求得EF的长,即可求得CD的长.【解答】解:
BN∥ED,∴∠NBD=∠BDE=37°,AE⊥DE,∴∠E=90°,∴BE=DE?
tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,CD=EF,AE=AB+EB=35.75(cm),CD=EF=AE﹣AF≈10.8(cm),答:
线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【议论】本题主要察看解直角三角形的应用,利用条件结构直角三角形是解题的要点,注意角度的应用.6.(2018?
青羊区模拟)【分析】本题要求的实质是BC和DF的长度,已知了AB、BD都是200米,可在Rt△ABC和Rt△BFD中用α、β的正切函数求出BC、DF的长.【解答】解:
Rt△ABC中,斜边AB=200米,∠α=16,°BC=AB?
sinα=200×sin16(°≈m),54Rt△BDF中,斜边BD=200米,∠β=42,°DF=BD?
sinβ=200×sin42°≈,132
第8页(共10页)
因此缆车垂直上升的距离应该是BC+DF=186(米).答:
缆车垂直上升了186米.
【议论】本题察看认识直角三角形的应用﹣坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的要点.(2017?
呼和浩特)【分析】过点C作CM⊥AB交AB延长线于点M,经过解直角△ACM获得AM的长度,经过解直角△BCM获得BM的长度,则AB=AM﹣BM.【解答】解:
过点C作CM⊥AB交AB延长线于点M,由题意得:
AC=40×10=400(米).在直角△ACM中,∵∠A=30°,∴CM=AC=200米,AM=AC=200米.
在直角△BCM中,∵tan20=°,BM=200tan20°,
∴AB=AM﹣BM=200﹣200tan20=200°(
﹣tan20)°,
因此A,B两地的距离AB长为200(
﹣tan20)°米.
【议论】本题察看解直角三角形的应用、三角函数等知识,解题的要点是增加协助线,结构直角三角形,
记住三角函数的定义,以及特别三角形的边角关系,属于中考常考题型.
8.(2017?
张家界)
版权所有
【分析】依照等腰直角三角形的性质得出
BC的长,再利用tan70.5°=
求出答案.
【解答】解:
∵在Rt△DBC中,∠DBC=45°,且CD=2.3米,BC=2.3m,∵在Rt△ABC中,∠ABC=70.5°,
∴tan70.5=°=
≈2.824,
解得:
AD≈4.2,答:
像体AD的高度约为4.2m.
【议论】本题主要察看认识直角三角形的应用,正确掌握锐角三角函数关系是解题要点.9.(2017?
长春)【分析】过B作地平面的垂线段BC,垂足为C,结构直角三角形,利用正弦函数的定义,即可求出BC的长.【解答】解:
过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB?
sin∠BAC=12×0.515≈(6.米2).即大厅两层之间的距离BC的长约为6.2米.【议论】本题察看认识直角三角形的应用﹣坡度坡角问题,把坡面与水平面的夹角α叫做坡角.在解决坡度的相关问题中,一般经过作高组成直角三角形,坡角即是一锐角,坡度实质就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.10.(2016?
常德)【分析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.【解答】解:
过B作BD⊥AC,∵∠BAC=75°﹣30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,
第9页(共10页)
由勾股定理得:
BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048(≈海里67),即我海监执法船在前去督查巡逻的过程中行驶了67海里.【议论】本题察看认识直角三角形的应用﹣方向角问题,熟练掌握直角三角形的性质是解本题的要点.11.(2014?
黔东南州)【分析】过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25m.由小明站在B点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,既而得出得出AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m.在Rt△CEN中,由tan∠ECN==,代入CN、EN解方程求出x的值,既而可求得旗杆的高EF.【解答】解:
过点A作AM⊥EF于M,过点C作CN⊥EF于N,∴MN=0.25m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m,∵∠ECN=30°,∴tan∠ECN===,解得:
x≈8.,8则EF=EM+MF≈8.8+1.5=10.3(m).答:
旗杆的高EF为10.3m.【议论】本题察看认识直角三角形的问题.该题是一个比较老例的解直角三角形问题,建立模型比较简单,但求解过程中波及到根式和小数,算起来麻烦一些.12.(2012?
黔东南州)优网版权所有【分析】
(1)由条件可知△ABC为斜三角形,因此作AC上的高,转变为两个直角三角形求解.
(2)求得海盗船抵达D处的时间,用BD的长度除以求得的时间即可获得结论.【解答】解:
(1)作CD⊥AB于点D,在直角三角形ADC中,∵∠CAD=45°,AD=CD.在直角三角形CDB中,∠CBD=30°,=tan30°,BD=CD.∵AD+BD=CD+CD=200,CD=100(﹣1);2)∵海盗以50海里/时的速度由C处沿正南方向对货轮进行拦截,
∴海盗抵达D处用的时间为100(
﹣1)÷50=2(
﹣1),
∴警舰的速度应为[200﹣100(
﹣1)]÷2(
﹣1)=50海里/时.
【议论】本题察看认识直角三角形的应用,解题的要点是将实责问题转变为直角三角形来求解.
第10页(共10页)