关于二氧化碳排放量的简单回归分析 统计学.docx

上传人:b****6 文档编号:4811739 上传时间:2022-12-09 格式:DOCX 页数:16 大小:255.85KB
下载 相关 举报
关于二氧化碳排放量的简单回归分析 统计学.docx_第1页
第1页 / 共16页
关于二氧化碳排放量的简单回归分析 统计学.docx_第2页
第2页 / 共16页
关于二氧化碳排放量的简单回归分析 统计学.docx_第3页
第3页 / 共16页
关于二氧化碳排放量的简单回归分析 统计学.docx_第4页
第4页 / 共16页
关于二氧化碳排放量的简单回归分析 统计学.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

关于二氧化碳排放量的简单回归分析 统计学.docx

《关于二氧化碳排放量的简单回归分析 统计学.docx》由会员分享,可在线阅读,更多相关《关于二氧化碳排放量的简单回归分析 统计学.docx(16页珍藏版)》请在冰豆网上搜索。

关于二氧化碳排放量的简单回归分析 统计学.docx

关于二氧化碳排放量的简单回归分析统计学

关于二氧化碳排放量的简单回归分析

(统计学)

班级:

老师:

学号:

姓名:

关于二氧化碳排放量的简单回归分析

在生产、运输、使用及回收该产品时所产生的平均温室气体排放量。

而动态的碳排放量,则是指每单位货品累积排放的温室气体量,同一产品的各个批次之间会有不同的动态碳排放量。

2016年3月7日,全国政协委员谢振华在回答记者提问时表示,中国将在2030年出现二氧化碳排放峰值。

这是由于我国国情还是发展中国家,发展必须有能源支撑,但是能源产业结构要大量调整,要求低碳绿色循环发展。

所以深入了解相关因素是减少二氧化碳排放量的增长速度显得非常重要。

从而能更加合理分配我们的资源形成良性循环,让二氧化碳稳定在合理范围内。

所以在这个目的下,我寻找二氧化碳排放量,化石燃料能源消耗(占总量%),人均耗电量(千瓦),人口增长百分比,森林面积占土地面积百分比。

4个变量来研究它们对人口增长率的影响。

以下是经过STATA处理过后的相关数据分析。

叙述性分析:

Variable

N

mean

sd

Min

Max

p25

p50

p75

二氧化碳排放量

478

1322071

3995586

40.337

34649483

9028.154

55362.53

405361.2

化石燃料能源消耗(占总量%)

478

69.60056

26.24651

2.857352839

100

51.52534

78.08336

89.26572

人均耗电量(千瓦)

478

4046.722

5566.474

24.40093456

52373.87701

744.4336

2329.28

5643.128

人口增长百分比

478

1.317696

1.464049

-9.816606702

13.59009481

0.4556135

1.201045

2.003449

森林面积占土地面积百分比

478

29.05334

19.79512

0

98.42948718

11.53764

30.02002

41.98008

此表给出了各变量的定义和叙述性统计。

样本一共包括世界248个国家3年的观察值。

1.二氧化碳排放量的均值,方差,最小值,最大值,在25%处,在50%处,在75%处的值分别是:

1322071,3995586,40.337,34649483,9028.154,55362.53,405361.2。

最大值和最小值相差较大34649442.66,在75%处,离最大值还有一定距离,说明各国二氧化碳排放量差距较大。

2.化石燃料能源消耗(占总量%)的均值,方差,最小值,最大值,在25%处,在50%处,在75%处的值分别是:

69.60056,26.24651,2.857352839,100,51.52534,78.08336,89.26572。

最大值100和最小值2.857352839相差很大,说明各国化石燃料能源消耗占总量的百分比差距非常大。

3.人均耗电量(千瓦),方差,最小值,最大值,在25%处,在50%处,在75%处的值分别是:

4046.722,5566.474,24.4009345652373.87701,744.4336,2329.28,5643.128。

最大值和最小值相差非常大(52349.47607),方差为5566.474,且在75%处,离最大值还有一定距离,说明各国人均耗电量(千瓦)有很大差距。

4:

人口增长百分比的均值,方差,最小值,最大值,在25%处,在50%处,在75%处的值分别是:

1.317696,1.464049,-9.816606702,13.59009481,0.4556135,1.201045,2.003449。

由此数据可知,人口增长百分比差异较大,最大值和最小值之间的差距较大,全球的人口数量分布比较不均匀。

5:

森林面积占土地面积百分比均值,方差,最小值,最大值,在25%处,在50%处,在75%处的值分别是:

29.05334,19.79512,0,98.42948718,11.53764,30.02002,41.98008。

最大值和最小值相差较大,说明森林面积分布不均匀。

2009年:

Variable

N

mean

sd

Min

Max

p25

p50

p75

二氧化碳排放量

161

1254233

3803955

40.337

31902900

8599.115

52790.13

382464.4

化石燃料能源消耗(占总量%)

161

69.7583

26.41409

2.857352839

100

51.52534

78.95949

89.24093

人均耗电量(千瓦)

161

4017.72

5554.66

35.72533026

51259.18763

752.4841

2165.685

5643.128

人口增长百分比

161

1.424278

1.720299

-3.671196064

13.59009481

0.4973814

1.221996

2.061045

森林面积占土地面积百分比

161

29.00317

19.97593

0

98.42948718

11.53764

29.78941

41.98008

2010年:

Variable

N

mean

sd

Min

Max

p25

p50

p75

二氧化碳排放量

158

1337506

4027189

58.672

33516380

8987.817

56543.31

419754.2

化石燃料能源消耗(占总量%)

158

69.36067

26.18187

3.198991409

99.99995132

51.16666

77.40515

89.26572

人均耗电量(千瓦)

158

4012.386

5577.824

24.40093456

51439.90869

744.4336

2329.28

5526.781

人口增长百分比

158

1.249536

1.291778

-9.816606702

10.3983646

0.4441971

1.191326

1.826752

森林面积占土地面积百分比

158

29.08098

19.58266

0

98.40384615

11.62627

30.13717

42.06013

2011年:

Variable

N

mean

sd

Min

Max

p25

p50

p75

二氧化碳排放量

159

1375423

4173801

51.338

34649483

9743.219

54766.64

439412.9

化石燃料能源消耗(占总量%)

159

69.67922

26.30477

3.814662459

100

52.14851

77.65184

89.64165

人均耗电量(千瓦)

159

4110.209

5601.708

31.14868668

52373.87701

738.8393

2394.398

5661.168

人口增长百分比

159

1.277505

1.340951

-5.919677828

8.658861205

0.3656904

1.200925

2.084903

森林面积占土地面积百分比

159

29.07667

19.94579

0

98.37948718

11.07948

30.20142

41.84395

 

总结上述表格,我们可以看出,现在全世界各国二氧化碳排放量,化石燃料能源消耗(占总量%),人均耗电量(千瓦),人口增长百分比,森林面积占土地面积百分比相差很大。

全球主要碳排放国家或地区排行榜国家排放量占全球百分比人均量1.中国7,219.2,19.12%。

2.美国6,963.8 18.44%。

3.欧盟5,047.7 13.37%。

4.俄罗斯1,960.0 5.19%5.印度1,852.9 4.91%。

我们不难发现在2009——2010之间二氧化碳排放量一直在增加,如果要让二氧化碳排放量稳定在一个适度的水平内(甚至减少),世界各国必然要协调发展,互相交流借鉴经验和对策。

全球经济未来仍将保持良好的发展态势,经济增长的同时常常伴随着城市化过程,含碳能源的消费带动城市化进程的同时,也使得大气中的二氧化碳含量明显增加,发展与环保之间的关系值得权衡。

如何在保持并不断改善民众生活质量的同时控制二氧化碳排放量,正成为全球各国面临的一大挑战。

 

 

二氧化碳排放量

化石燃料能源消耗(占总量%)

人均耗电量(千瓦)

人口增长百分比

森林面积占土地面积百分比

二氧化碳排放量

1

化石燃料能源消耗(占总量%)

0.1498

1

人均耗电量(千瓦)

0.0309

0.1089

1

人口增长百分比

-0.0844

-0.1132

-0.0341

1

森林面积占土地面积百分比

0.0149

-0.2748

-0.02

-0.2471

1

此表给出了各个数值之间的相关系数矩阵。

可以看到,二氧化碳排放量和化石燃料能源消耗占总量的百分比、人均耗电量(千瓦)、森林面积占土地面积百分比这3个变量都是成正相关关系,而与人口增长百分比成负相关关系,人口增长百分比与其他各个X变量之间都是负相关。

二氧化碳排放量与二氧化碳排放量和化石燃料能源消耗占总量的百分比、人均耗电量(千瓦)、人口增长百分比、森林面积占土地面积百分比的相关性分别是0.14980.0309-0.08440.0149。

这表明化石燃料能源消耗占总量的百分比、人均耗电量(千瓦)、森林面积占土地面积百分比这3个变量的增加会导致二氧化碳排放量的增加,尤其是化石燃料能源消耗占总量的百分比,因为现实生活当中,二氧化碳的排放大多是物品和化石燃料的燃烧所形成的。

不过碳排放不仅仅是燃料燃烧会产生,经济的增长也是会使碳排放增加的原因,经济增长,汽车,用电,能源使用增加,都会造成二氧化碳排放量的增加。

2009--2011相关系数矩阵

2009年

二氧化碳排放量

化石燃料能源消耗(占总量%)

人均耗电量(千瓦)

人口增长百分比

森林面积占土地面积百分比

二氧化碳排放量

1

化石燃料能源消耗(占总量%)

0.1436

1

人均耗电量(千瓦)

0.0258

0.1262

1

人口增长百分比

-0.0869

-0.0289

0.083

1

森林面积占土地面积百分比

0.0159

-0.2892

-0.041

-0.2673

1

2010年

二氧化碳排放量

化石燃料能源消耗(占总量%)

人均耗电量(千瓦)

人口增长百分比

森林面积占土地面积百分比

二氧化碳排放量

1

化石燃料能源消耗(占总量%)

0.1536

1

人均耗电量(千瓦)

0.038

0.0963

1

人口增长百分比

-0.0812

-0.1791

-0.1348

1

森林面积占土地面积百分比

0.0157

-0.2771

-0.0057

-0.2267

1

2011年

二氧化碳排放量

化石燃料能源消耗(占总量%)

人均耗电量(千瓦)

人口增长百分比

森林面积占土地面积百分比

二氧化碳排放量

1

化石燃料能源消耗(占总量%)

0.1525

1

人均耗电量(千瓦)

0.0285

0.1039

1

人口增长百分比

-0.0865

-0.165

-0.0897

1

森林面积占土地面积百分比

0.0131

-0.258

-0.013

-0.2473

1

基本回归分析:

Source

SS

df

MS

Numberofobs=478

F(4,473)=3.51

Model

2.1965E+14

4

5.4913E+13

Prob>F=0.0077

Residual

7.3955E+15

473

1.5635E+13

R-squared=0.0288

AdjR-squared=0.0206

Total

7.6152E+15

477

1.5965E+13

RootMSE=4000000

二氧化碳排放量

Coef.

Std.Err.

t

P>t

[95%Conf.

Interval]

化石燃料能源消耗(占总量%)

23461.33

7351.957

3.19

0.002

9014.79

37907.86

人均耗电量(千瓦)

9.361919

32.72764

0.29

0.775

-54.94764

73.67148

人口增长百分比

-152002.3

130130

-1.17

0.243

-407706.8

103702.2

森林面积占土地面积百分比

8828.605

9943.56

0.89

0.375

-10710.41

28367.62

_cons

-404943.5

752860.7

-0.54

0.591

-1884309

1074422

以上表格做出来的是二氧化碳排放量和化石燃料能源消耗占总量的百分比、人均耗电量(千瓦)、人口增长百分比、森林面积占土地面积百分比的基本回归结果。

从上述表格可知,我们的样本数据是478。

模型。

残差,总共的平方和分别是2.1965e+14、7.3955e+15、7.6152e+15。

它们的自由度分别是4,473,477。

它们的样本数据平均平方和分别是5.4913e+13,1.5635e+13,1.5965e+13。

R^2=0.0288,更趋近与0,所以表明二氧化碳和它们的相关性不是很好。

再来看它们各自的信赖区间。

人口总数的对数:

[-0.04698420.0021243]。

15-64岁人口:

[0.25752880.2983998]。

出生率:

[0.24448180.2732068]。

人均医疗卫生支出(美元):

[0.00021710.0002994]。

截距项:

[-23.43346-20.14289]。

现在来看他们的P值和t值。

从上述表格中我们可以看出,化石燃料能源消耗占总量的百分比、人均耗电量(千瓦)、森林面积占土地面积百分比的P值分别=0.002,0.775,0.375。

在1%显著性水平上显著,说明它们与二氧化碳的相关性非常强,同时它们的t值是正的,可以看出它们有着强烈的正相关。

尤其是人均耗电量(千瓦),与二氧化碳的正相关性及其强烈。

人口增长百分比的对数的P值=0.243,,t值为负=-1.17,所以和二氧化碳排放量有较为明显的的负相关关系。

基本回归分析(无截距项):

Source

SS

df

MS

Numberofobs=478

F(4,473)=3.51

Model

2.1965E+14

4

5.4913E+13

Prob>F=0.0077

Residual

7.3955E+15

473

1.5635E+13

R-squared=0.0288

AdjR-squared=0.0206

Total

7.6152E+15

477

1.5965E+13

RootMSE=4000000

二氧化碳排放量

Coef.

Std.Err.

t

P>t

[95%Conf.

Interval]

化石燃料能源消耗(占总量%)

23461.33

7351.957

3.19

0.002

9014.79

37907.86

人均耗电量(千瓦)

9.361919

32.72764

0.29

0.775

-54.94764

73.67148

人口增长百分比

-152002.3

130130

-1.17

0.243

-407706.8

103702.2

森林面积占土地面积百分比

8828.605

9943.56

0.89

0.375

-10710.41

28367.62

2009年

-303662.5

1203577

-0.25

0.801

-2681074

2073749

2010年

-566375.8

1391974

-0.41

0.685

-3316347

2183595

2011年

-395768

1408443

-0.28

0.779

-3178130

2386594

以上表格做出来的是二氧化碳排放量和化石燃料能源消耗占总量的百分比、人均耗电量(千瓦)、人口增长百分比、森林面积占土地面积百分比的基本回归结果。

从上述表格可知,我们的样本数据是478。

模型。

残差,总共的平方和分别是2.1965e+14、7.3955e+15、7.6152e+15。

它们的自由度分别是4,473,477。

它们的样本数据平均平方和分别是5.4913e+13,1.5635e+13,1.5965e+13。

R^2=0.0288,更趋近与0,所以表明二氧化碳和它们的相关性不是很好。

再来看它们各自的信赖区间。

人口总数的对数:

[-0.04698420.0021243]。

15-64岁人口:

[0.25752880.2983998]。

出生率:

[0.24448180.2732068]。

人均医疗卫生支出(美元):

[0.00021710.0002994]。

截距项:

[-23.43346-20.14289]。

2009年:

[-26810742073749]。

2010年:

[-33163472183595]。

2011年:

[-31781302386594]。

现在来看他们的P值和t值。

从上述表格中我们可以看出,化石燃料能源消耗占总量的百分比、人均耗电量(千瓦)、森林面积占土地面积百分比的P值分别=0.002,0.775,0.375。

在1%显著性水平上显著,说明它们与二氧化碳的相关性非常强,同时它们的t值是正的,可以看出它们有着强烈的正相关。

尤其是人均耗电量(千瓦),与二氧化碳的正相关性及其强烈。

人口增长百分比的对数的P值=0.243,,t值为负=-1.17,所以和二氧化碳排放量有较为明显的的负

相关性。

总结上述回归分析我们得到一些比较有价值的信息是化石燃料能源消耗占总量的百分比、人均耗电量(千瓦)、森林面积占土地面积百分比与二氧化碳有很强的正相关,这在我们现实中也可以得到验证,

化石燃料的生产和燃烧过程中,本身就会产生CO2(二氧化碳)。

所以化石燃料能源消耗占总量的百分比的增加会导致二氧化碳排放量的增加。

日常生活当中每消耗一度电,就相当于消耗了0.4千克标准煤,同时相当于增加排放了0.997千克的二氧化碳。

由此,我们可以得出这样的公式每耗费一度电=增加0.997千克二氧化碳。

耗费一千克标准煤=增加2.493千克二氧化碳。

对森林乱砍乱伐,大量农田建成城市和工厂,破坏了植被,减少了将二氧化碳转化为有机物的条件,破坏了二氧化碳生成与转化的动态平衡,就使大气中的二氧化碳含量逐年增加。

但是这里的人口增长百分比和二氧化碳排放量却成比较明显的负相关,和现实不太相符,我的猜测是,随人口的增多,食物、空间、能源的需求逐年递增,伴随着的是能源的消耗,植被的破坏,直接产物之一就是温室气体的增加,不光是化石燃料和煤炭的燃烧产生,我们种植的农作物一部分也产生.而人类自然呼吸产生的CO2在大自然面前可以忽略不计.所以二氧化碳的增加和人口的增多没直接关系只有间接的联系。

而且数据中可能是出生人口的增加(>)死亡人数增加,所以反而人口增加,二氧化碳排放量减少。

就我国二氧化碳排放量来说,据挪威的奥斯陆国际气候与环境研究中心(CICERO)推算,2016年中国二氧化碳累计排放量将达到1464亿吨,将超过美国的1462亿吨,跃居首位。

第3位以后依次是欧洲、俄罗斯、印度和日本,预计2028年之后印度将超过俄罗斯。

中国一直主张发达国家过去大量排放二氧化碳是导致全球气候变暖的主要原因,将自身定位为发展中国家。

 另一方面,受中国快速的产业发展和城市化影响,2006年以后,从单年度的二氧化碳排放量来看中国已经位居世界首位,且排放量已占到全球总排放量的4分之1。

 

二氧化碳是主要的温室气体。

因为二氧化碳具有保温的作用,会逐渐使地球表面温度升高。

由温室效应所引起的海平面升高,也会对人类的生存环境产生巨大的影响。

两极海洋的冰块也将全部融化。

所有这些变化对所有生物而言无异于灭顶之灾。

所以我们应当采取措施

1.原煤脱硫技术,可以除去燃煤中大约40%一60%的无机硫。

2.改进燃煤技术,减少燃煤过程中二氧化硫和氮氧化物的排放量。

3.目前主要用石灰法,可以除去烟气中85%一90%的二氧化硫气体。

4.开发新能源,如太阳能,风能,核能,可燃冰等。

5.节能减排,在日常生活中减少二氧化碳排放。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小学作文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1