生物化学知识点总结.docx

上传人:b****6 文档编号:4774146 上传时间:2022-12-08 格式:DOCX 页数:14 大小:29.73KB
下载 相关 举报
生物化学知识点总结.docx_第1页
第1页 / 共14页
生物化学知识点总结.docx_第2页
第2页 / 共14页
生物化学知识点总结.docx_第3页
第3页 / 共14页
生物化学知识点总结.docx_第4页
第4页 / 共14页
生物化学知识点总结.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

生物化学知识点总结.docx

《生物化学知识点总结.docx》由会员分享,可在线阅读,更多相关《生物化学知识点总结.docx(14页珍藏版)》请在冰豆网上搜索。

生物化学知识点总结.docx

生物化学知识点总结

第一部分:

名词解释

1.蛋白质:

是由许多氨基酸通过肽键相连形成的高分子含氮化合物。

2.氨基酸:

含有氨基和羧基的一类有机化合物的通称。

3.等电点:

在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。

4.肽键:

一个氨基酸的a-羧酸与另一个氨基酸的a-氨基脱水缩和形成的化学键。

5.蛋白质的别构效应:

又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。

 

6.蛋白质的协同效应:

一个寡聚体蛋白质的一个亚基与其配体结合后,能影响寡聚体中另一个亚基与配体结合的现象。

7.蛋白质的变性:

蛋白质在某些物理和化学因素作用下其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质的变性。

8.凝胶过滤:

利用具有网状结构的凝胶的分子筛作用利用各蛋白质分子大小不同来进行分离

9.层析:

待分离的蛋白质溶液经过一个固定物质时,根据待分离的蛋白质颗粒的大小,电荷多少及亲和力使待分离的蛋白质在两相中反复分配,并以不同流速经固定相而达到分离蛋白质的目的。

10.胶原蛋白:

胶原纤维经过部分降解后得到的具有较好水溶性的蛋白质。

P62

11.结构域:

相对分子质量较大的蛋白质三级结构通常可分割成一个或数个球状或者纤维状的区域,折叠得较为紧密,各行期能,成为结构域。

12.免疫球蛋白:

是一组具有抗体活性的蛋白质血清中含量最丰富的蛋白质之一

13.波尔效应:

pH对血红蛋白氧亲和力的这种影响。

14.热休克蛋白:

是在从细菌到哺乳动物中广泛存在一类热应急蛋白质。

当有机体暴露于高温的时候,就会由热激发合成此种蛋白,来保护有机体自身。

15.次级键:

除了典型的强化学键(共价键、离子键和金属键)等依靠氢键、盐键以及弱的共价键和范德华作用力(即分子间作用力)相结合的各种化学键的总称。

16.肽平面:

肽键具有一定程度的双键(C-N键)性质(参与肽键的六个原子C、H、O、N、Cα1、Cα2不能自由转动,位于同一平面)。

17.寡聚蛋白质:

由两个或两个以上亚基组成的蛋白质。

18.多酶复合体:

几种酶缔合而成的结构和功能实体催化细胞代谢中的一个连续反应的系列

19.底物:

在酶的作用下进行化学变化的物质叫底物。

20.米氏方程:

(Michaelis-Mentenequation)表示一个酶促反应的起始速度(v)与底物浓度(S)关系的速度方程,V0=Vmax[S]

Km+[S]

[S]为底物浓度,V为不同[S]时的反应速度,Vmax为最大反应速度,Km为米氏常数,等于酶促反应速度为最大一般时的底物的浓度。

21.酶的竞争性抑制:

它与被抑制的酶的底物通常有结构上的相似性,能与底物竞相争夺酶的活性中心,从而阻碍酶底物复合物的形成,使酶的活性降低。

22.活性中心:

酶分子中直接与底物结合,并催化底物发生化学反应的部位

23.共价催化:

一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。

24.酶的明镜定向效应:

当专一性底物向酶活性中心靠近时,会诱导酶分子构象发生改变,使酶活性中心的相关基团和底物的反应基团正确定向排列,同时使反应基团之间的分子轨道以正确方向严格定位,使酶促反应易于进行。

25.酶原激活:

酶原激活是由无活性酶原转变为活性酶的过程

26.同工酶:

指生物体内催化相同反应而分子结构不同的酶

27.维生素:

是人和动物为维持正常的生理功能而需的,但自身不能合成或合成量很少,必须从食物中获得的一类微量的低相对分子质量的有机物质。

28.转化作用:

通过自动获取或人为地供给外源DNA,使细胞或培养的受体细胞获得新的遗传表型

29.熔解温度:

Tm值就是DNA熔解温度指把DNA的双螺旋结构降解一半时的温度。

不同序列的DNA,Tm值不同。

DNA中G-C含量越高,Tm值越高,成正比关系。

米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。

30.稀有碱基:

称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。

31.回文结构:

双链DNA中含有的二个结构相同、方向相反的序列

32.DNA的超螺旋:

双螺旋DNA进一步扭曲盘绕则形成其三级结构,超螺旋是DNA三级结构的主要形式。

33.基因工程:

(geneticengineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。

基因工程技术为基因的结构和功能的研究提供了有力的手段。

对携带遗传信息的分子进行设计和施工的分子工程,包括基因重组、克隆和表达。

34.生物膜:

细胞、细胞器和其环境接界的所有膜结构的总称。

35.蛋白膜蛋白:

分内在蛋白和外在蛋白两种。

内在蛋白以疏水的部分直接与磷脂的疏水部分共价结合,两端带有极性,贯穿膜的内外。

蛋白质极性:

膜内在性蛋白质的极性区突向膜表面,非极性部分埋在双层内部。

36.呼吸链:

(respiratorychain)是由一系列的递氢反应(hydrogentransferreactions)和递电子反应(eletrontransferreactions)按一定的顺序排列所组成的连续反应体系,它将代谢物脱下的成对氢原子交给氧生成水,同时有ATP生成。

37.氧化磷酸化:

是物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应。

主要在线粒体中进行。

38.底物磷酸化:

指不需氧参加,只需要代谢物脱氢(氧化)及其分子内部所含能量重新分布,即刻生成高能磷酸键的作用。

39.化学渗透学说:

(chemiosmotictheory)由英国的米切尔(Mitchell 1961)经过大量实验后提出。

该学说假设能量转换和偶联机构具有以下特点:

①由磷脂和蛋白多肽构成的膜对离子和质子具有选择性 ②具有氧化还原电位的电子传递体不匀称地嵌合在膜内 ③膜上有偶联电子传递的质子转移系统 ④膜上有转移质子的ATP酶。

40.糖酵解:

在缺氧的条件下,最终形成乳酸或丙酮酸同时释出部分能量的过程。

41.异型乙醇发酵:

一些细菌能够通过HMP途径进行异型乳酸发酵产生乳酸、乙醇和CO2等。

例如:

葡萄糖+ADP+Pi--->乳酸+乙醇+CO2+ATP

同型乙醇发酵:

酿酒酵母能够通过EMP途径进行同型酒精发酵,即由EMP途径代谢产生的丙酮酸经过脱羧放出CO2,同时生成乙醛,乙醛接受糖酵解过程中释放的NADH+和H+被还原成乙醇。

这是一个低效的产能过程,大量能量仍然贮存于乙醇中,其总反应为:

葡萄糖+2ADP+2Pi—>2乙醇+2CO2+2ATP

42.核苷酸:

Nucleotide,一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。

43.二磷酸腺苷:

由一分子腺苷与两个相连的磷酸根组成的化合物,是一种核苷酸。

在生物体内,通常为三磷酸腺苷(ATP)水解失去一个磷酸根,即断裂一个高能磷酸键,并释放能量后的产物。

44.三羧酸循环:

(tricarboxylicacidcycle)是需氧生物体内普遍存在的代谢途径,因为在这个循环中几个主要的中间代谢物是含有三个羧基的柠檬酸,所以叫做三羧酸循环,又称为柠檬酸循环;或者以发现者HansAdolfKrebs(英1953年获得诺贝尔生理学或医学奖)命名为Krebs循环。

三羧酸循环是三大营养素(糖类、脂类、氨基酸)的最终代谢通路,又是糖类、脂类、氨基酸代谢联系的枢纽。

反应部位:

线粒体。

一个三羧酸循环:

消耗一分子CoA;经过四次脱氢,两次脱羧,一次彻底水平磷酸化;生成一分子FADH2,三分子NADH+H+,2分子CO2,一分子GTP;关键酶有柠檬酸合酶,a-酮戊二酸脱氢酶复合体和异柠檬酸脱氢酶;整个循环反应为不可逆反应;中间产物起催化剂作用,本身无量的变化,不可能通过三羧酸循环直接从乙酰CoA合成草酰乙酸或三羧酸循环中其他产物,同样中间产物也不能直接在三俗酸循环中被氧化为CO2和H2O

草酰乙酸的催化作用来源:

丙酮酸缩化而成;苹果酸脱氢而成;柠檬酸裂解而成;天冬氨酸转化而成。

三羧酸循环的生理意义:

是三大营养物质氧化分解的共同途径;是三大营养物质代谢联系的枢纽;为其他物质代谢提供小分子前体;为呼吸链提供H+和e-

第二部分:

填空

1、氨基酸在等电点(pI)时,以______离子形式存在,在PH>PI时以______离子存在,在PH

2、蛋白质结构分为________________________四个层次

3、酮体是由 _____  _____    _____   组成。

4、核苷酸是由______、______和______三种成分组成。

5、在离体的线粒体实验中测得丁酸的P/O比值为2.5-2.8,说明丁酸氧化脱下来2H是通过______呼吸链传递给O2的,能生成______分子ATP。

6、糖原合成的关键酶是 ______。

7、依据酶催化的类型,把酶分为六大类:

____  ____  ____ _____   ___    ____     。

8、生物合成尿素分子两个N原子,一个来自______ 、另一个来自______。

9、A、B、C、D、E五种氨基酸,其pI由低到高,设溶液pH在C的等电点,则A带电荷,B带电荷,C带电荷,D带电荷,E带电荷。

10、三羧酸循环过程有次脱氢,次底物水平磷酸化,循环一次共产生molATP。

 

12、 1分子NADH+H+经呼吸链氧化生成_________ATP,1分子FADH2经呼吸链氧化生成_______ATP。

13、遗传密码的特点有________、__________、___________、____________、__________

14、偶数碳原子的脂肪酸经β—氧化后生成的产物为_________________,。

15、糖酵解中的三个调节酶是_______________、_______________、_______________。

16、缺乏VA引起的病是_______________;缺乏VD引起的病是_____________;缺乏Vc引起的病是_____________;缺乏VB11引起的病是___________。

17、测定酶活力时,底物浓度应________________________、反应温度应选在____________、反应pH应选在____________、反应时间应在反应的______期进行。

18、已知DNA编码链的顺序为5’TCGTCGACGATGACTATCGGC3’,则模板链的顺序为________________________,指导合成的mRNA的顺序_______________________。

19、 tRNA的二级结构是______________,三级结构是_____________。

20、在标准条件下,1mg酶在1min内转化了2μmol底物,那么_________mg酶代表一个酶活力单位。

21、证实DNA是半保留复制的经典实验是由________和________完成的。

22、生物的DNA的碱基互补规律即_________。

23、蛋白质生物合成时,核糖体沿mRNA的________方向移动,同时肽链从________端向________端方向延长。

24、蛋白质的基本组成单位是,它们之间以键相连。

25、蛋白质是两性电解质,当溶液的pH值大于其等电点时带.

26、DNA的二级结构是;DNA的三级结构是;tRNA的二级结构是。

27、蛋白质平均含氮量为今测得1克样品含氮量为10毫克其蛋白质含量应为%。

28、蛋白质是稳定的亲水胶体,其稳定因素是和。

29、酶活性中心包括和两部分,酶的专一性分为、和三大类。

30、丙二酸是琥珀酸脱氢酶的抑制剂。

31、动物体内ATP的生成方式有和两种。

32、1分子葡萄糖经过糖酵解和有氧氧化途径分别生成、ATP。

33、动物体内最重要的两种转氨酶是和。

34、氨是有毒物质,体内解氨毒的主要器官是、解氨毒的主要途径是生成无毒的。

35、遗传密码共有个;起始密码是,终止密码是、、。

36、DNA的生物合成叫、RNA的生物合成叫、蛋白质的生物合成叫。

37、酶的活性中心包括_____________、________________两部分。

全酶由_________________、________________两部分组成。

38、1分子乙酰COA经三羧酸循环可生成_________分子NADPH+______分子FADH2_________分子ATP。

1分子葡萄糖经有氧氧化以底物水平磷酸化的方式能生成________分子ATP;以电子传递水平磷酸化的方式生成_________分子ATP,净生成________分子ATP。

39、核酸的基本组成单位是___________,DNA的合成过程叫做___________,合成方向是___________,RNA的合成过程叫做___________,蛋白质的合成模板是___________。

40、酮体包括_________、_______、________三种物质,合成酮体的原料是___________。

41、鉴定蛋白质产用的方法是:

___________、___________、___________、__________。

42、氨基酸的脱氨基作用有___________、___________、___________三种方式,解氨毒的主要器官是________。

43、在脂肪酸氧化过程中,脂肪酸活化产生的脂肪酰CoA由_______________携带通过线粒体内膜。

45、核黄素和硫胺素在体内形成的辅酶分别是_____________和____________。

缺乏维生素C引起的疾病是_____________。

46、动物体内ATP生成的方式有_____________和_____________。

47、1分子18碳硬脂酸经β-氧化完全分解,可生成________分子乙酰_____________FADH2_____________分子的NADPH+,净生成___________分子ATP。

48、多肽链中氨基酸之间通过____________相连,核酸分子中核苷酸之间通过____________相连;糖原分子中葡萄糖之间通过____________相连。

49、DNA的二级结构是____________,DNA的三级结构是____________,tRNA的二级结构是____________。

50、遗传密码共有________个,起始密码是________,终止密码是________________。

51、酶的活性中心包括、两部分。

全酶由和两部分组成。

52、沉淀蛋白质的方法有、、、和。

53、 碱基互补规律DNA中是和;RNA中是和。

54、当氨基酸溶液的pH=pI时,氨基酸以离子形式存在;当pH>pI时,氨基酸以离子形式存在。

56、磷酸戊糖途径中作为中间产物用于核苷酸的合成和用于合成反应的还原剂。

57、肝脏内由合成的、、叫做酮体,但由于肝内缺少利用酮体的酶,因此必须转移到肝外组织内进行氧化。

58、体内肌肉组织中高能磷酸键的储存形式是,而能量释放、利用都以为中心。

59、谷胱甘肽是由、和构成的。

60、氨基酸脱氨基方式有、、三种。

61、 酶催化反应的特点是:

___________、__________、__________,酶的活性中心包括_________、_________两部分。

全酶由___________、____________两部分组成。

62、1分子乙酰COA经三羧酸循环可生成_________分子NADPH+______分子FADH2_____分子CO2_____分子H2O_________分子ATP。

1分子葡萄糖经有氧氧化以底物水平磷酸化的方式能生成________分子ATP;以电子传递水平磷酸化的方式生成_________分子ATP,净生成________分子ATP。

63、 分子软脂酸经-氧化完全分解,可生成________分子FADH2_____________分子的NADPH+,净生成___________分子ATP.

64、 核酸的基本组成单位是___________,DNA的合成过程叫做___________,合成方向是___________,RNA的合成过程叫做___________,蛋白质的合成模板是___________。

65、 酮体包括___________、___________、___________三种物质,合成酮体的原料是___________,在___________中生成。

66、 Jacob和Monod提出的操纵子模型,酶的___________和___________是在调节基因产物阻遏蛋白的作用下,通过操纵基因控制___________或基因组的转录而发生的。

67、 氨基酸的脱氨基作用有___________、___________、___________三种方式,体内解氨毒的主要方式是生成___________和___________。

68、动物缺乏维生素A引起的病是___________;缺乏维生素D引起的病是___________;缺乏维生素B12引起___________。

69所有蛋白质的翻译开始于的参与。

70、 黄素和硫胺素在体内形成的辅酶分别是_____________和____________。

缺乏维生素C引起的疾病是_____________。

71、 动物体内ATP生成的方式有_____________和_____________。

72、 蛋白质生物合成的反应历程有_________、______、_____、________。

73、 核酸的基本组成单位是___________,DNA的二级结构是___________。

74、影响酶促反应的因素有_____________、_____________、_____________、_____________、_____________、_____________。

75、多肽链中氨基酸之间通过____________相连,核酸分子中核苷酸之间通过____________相连;糖原分子中葡萄糖之间通过____________相连。

76、DNA的二级结构是____________,DNA的三级结构是____________,tRNA的二级结构是____________。

77、酶的专一性可分为:

________________、________________和______________三类,全酶有_____________和_____________两部分组成,酶的活性中心包括____________和____________两部分。

78、缺乏维生素A引起的疾病是____________,缺乏维生素C引起的疾病是____________,缺乏维生素D引起的疾病是____________。

79、一分子葡萄糖经糖酵解途径和有氧氧化净生成_________和_________分子ATP。

1分子乙酰COA经三羧酸循环可生成_________NADPH+______FADH2_____CO2_____H2O_________分子ATP。

80、动物体内ATP生成的方式有_____________和_____________两种。

1分子NADH+H+经呼吸链氧化生成_________ATP,1分子FADH2经呼吸链氧化生成_________ATP。

81、动物体内最重要的两种转氨酶是________和________。

82、氨是有毒物质,体内解氨毒的主要器官是________,解氨毒的途径是生成无毒的________、________和________。

83、遗传密码共有________个,起始密码是________,终止密码是________________。

84、蛋白质的基本组成单位是___________,核酸的基本组成单位是___________,DNA的合成过程叫做___________,合成方向是___________,RNA的合成过程叫做___________,蛋白质的合成模板是___________。

85、原核生物主要的DNA聚合酶有种,分别是:

___________、___________、__________。

86、酶的活性中心包括___________和___________两个功能部位。

87、TCA循环中有两次脱羧反应,分别是由_______和________催化。

88、DNA合成时,先由引物酶合成_______,再由____________在其3′端合成DNA链,然后由_______切除引物并填补空隙,最后由_______连接成完整的链。

89、氨基酸脱下氨的主要去路有______________、____________和______________。

90、一个碳原子数为n(n为偶数)的脂肪酸在β-氧化中需经_______次β-氧化循环,生成_______个乙酰CoA,_______个FADH2和_______个NADH+H+。

91、1分子乙酰COA经三羧酸循环可生成_________分子NADH+______分子FADH2_________分子ATP。

1分子葡萄糖经有氧氧化以底物水平磷酸化的方式能生成________分子ATP;以电子传递水平磷酸化的方式生成_________分子ATP,净生成________分子ATP。

92、尿素分子中两个N原子,分别来自_______和_______。

93、缺乏维生素B11和B12可引起_________,缺_________可引起糙皮病。

94、COA汉语名是___________,含有维生素_________。

 

1、两性,负,正2、一级,二级,三级,四级结构3、乙酰乙酸,丙酮,β-羟丁酸

4、磷酸,戊糖,碱基5、NADH,2.56、 糖原合成酶

7、 氧化还原酶,转移酶,水解酶,裂解酶,异构,连接酶8、 NH3,天冬氨酸

9、正,正,不带电,负,负10、4,1,1012、2.5,1.5

13、①连续性;②简并性;③通用性;④方向性;⑤摆动性;14、乙酰CoA。

15、 己糖激酶,磷酸果糖激酶,丙酮酸激酶

16、 多发性神经炎,佝偻病,坏血病,巨幼红细胞贫血17、 过量,最适,最适,初始期

18、 3’AGCAGCTGCTACTGATAGCCG5’,3’AGCAGCUGCTUCTGUTUGCCG5’

19、 三叶草形,倒L形20、0.521、Meselson,Stahl22、A-TC-G

23、5’→3’,NC24、氨基酸,肽健25、负电荷

26、双螺旋结构,超螺旋结构,三叶草形,27、16%,62.5克28、蛋白质分子周围形成水化膜,带相同电荷29、结合部位

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 职业规划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1