传热综合实验实验报告.docx

上传人:b****6 文档编号:4763778 上传时间:2022-12-08 格式:DOCX 页数:19 大小:223.35KB
下载 相关 举报
传热综合实验实验报告.docx_第1页
第1页 / 共19页
传热综合实验实验报告.docx_第2页
第2页 / 共19页
传热综合实验实验报告.docx_第3页
第3页 / 共19页
传热综合实验实验报告.docx_第4页
第4页 / 共19页
传热综合实验实验报告.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

传热综合实验实验报告.docx

《传热综合实验实验报告.docx》由会员分享,可在线阅读,更多相关《传热综合实验实验报告.docx(19页珍藏版)》请在冰豆网上搜索。

传热综合实验实验报告.docx

传热综合实验实验报告

传热综合实验

一、实验目的:

1、掌握传热系数K、传热膜系数α1的测定方法,加深对其概念和影响因素的理解;

2、掌握用最小二乘法确定关联式

中常熟A、指数m的值;

3、通过对普通套管换热器和强化套管换热器的比较,了解工程上强化传热的措施;

4、掌握孔板流量计的原理;

5、掌握测温热电偶的使用方法。

二、实验原理

(一)无量纲准则数

对流传热准数关联式是无量纲准则数之间的方程,主要是有关Nu、Re、Pr等数据组的关系。

雷诺准数

努赛尔特准数

普兰特准数

式中:

d——换热器内管内劲,m;

——空气传热膜系数,W·m-2·℃;

——空气密度,kg·m-3;

——空气的传热系数,W·m-1·℃;

——空气定压比热,J·kg-1·℃;

——空气的动力粘度,Pa·S。

实验中用改变空气的流量来改变准数Re之值。

根据定性温度计算对应的Pr准数值。

同时由牛顿冷却定律,求出不同流速下的传热膜系数

值,进而算得Nu准数值。

(二)对流传热准数关联式

对于流体在圆形直管中作强制湍流时的对流传热系数的准数关联式可以表示成:

系数C、指数m和n则需由实验加以确定。

通过实验测得不同流速下孔板流量计的压差,空气的进、出口温度和换热器的壁温,根据所测的数据,经过差物性数据和计算,可求出不同流量下的Nu和Re,然后用线性回归方法(最小二乘法)确定关联式

中常数A、m的值。

(三)线性回归

用图解法对多变量方程进行关联时,要对不同变量Re和vPr分别回归。

为了便于掌握这类方程的关联方法,可去n=0.4。

这样就简化成单变量方程。

两边取对数,得到直线方程

在双对数坐标系中作图,找出直线斜率,即为方程的指数m。

在直线上任取一点的函数值带入方程中得到系数C,即

用图解法,根据实验点确定直线位置,有一定的人为性。

而用最小二乘法回归,可以得到最佳关联结果。

应用计算机对多变量方程进行一次回归,就能同时得到C、m、n。

(四)空气传热膜系数

因为空气传热膜系数

1远小于蒸汽传热膜系数

2,所以传热管内的对流传热系数

1约等于冷热流体间的总传热系数K。

则有

(1)传热速率方程:

式中:

A——传热面积(内管内表面积),m2;

——管内外流体的平均温差,℃。

其中,

T——蒸汽侧的温度,可近似用传热管的外壁面平均温度TW表示,TW×E

E——热电偶测得的热电势,mV。

(2)传热量Q可由热平衡方程求得:

——空气质量流量,kg/h;

V——空气体积流量,m3/h;

t1,t2——空气进出口温度,℃。

(3)实验条件下的空气流量V,需按下式计算

式中:

——20℃下的体积流量;

——空气进出口平均温度,℃。

(五)强化传热机理

强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。

强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。

螺旋线圈的结构图如图1所示,螺旋线圈由直径3mm以下的铜丝和钢丝按一定节距绕成。

将金属螺旋线圈插入并固定在管内,即可构成一种强化传热管。

在近壁区域,流体一面由于螺旋线圈的作用而发生旋转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。

由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。

螺旋线圈是以线圈节距H与管内径d的比值以及管壁粗糙度(

)为主要技术参数,且长径比是影响传热效果和阻力系数的重要因素。

科学家通过实验研究总结了形式为

的经验公式,其中B和m的值因螺旋丝尺寸不同而不同。

单纯研究强化手段的强化效果(不考虑阻力的影响),可以用强化比的概念作为评判准则,它的形式是:

,其中Nu是强化管的努塞尔准数,Nu0是普通管的努塞尔准数,显然,强化比

>1,而且它的值越大,强化效果越好。

三、实验装置与流程:

(一)流程

图2空气-水蒸气传热综合实验装置流程图

1、普通套管换热器;2、内插有螺旋线圈的强化套管换热器;3、蒸汽发生器;4、旋涡气泵;

5、旁路调节阀;6、孔板流量计;8、9空气支路控制阀;10、11、蒸汽支路控制阀;

12、13、蒸汽放空口;14、蒸汽上升主管路;15、加水口;16、放水口;17、液位计;

18、冷凝液回流口;19—普通管测压口;20—强化管测压口

来自鼓风机的空气通过调节阀1转子流量计2和换热管3,经换热后排空。

热量由缠绕在换热管表面的电热丝4供给;空气流量由转子流量计2测定;进、出口空气温度由温度计读取,其进口压强由U形管液柱压差计显示;壁温由热电偶测量。

(二)实验装置主要参数

表1实验装置结构参数

实验内管内径di(mm)

20.00

实验内管外径do(mm)

实验外管内径Di(mm)

50

实验外管外径Do(mm)

5

测量段(紫铜内管)长度l(m)

1.00

强化内管内插物尺寸

丝径h(mm)

1

节距H(mm)

40

加热釜

操作电压(V)

≤200

操作电流(A)

≤10

四、实验方法与步骤

(一)实验前的准备及检查工作

1.向电加热釜加水至液位计上端红线处。

2.向冰水保温瓶中加入适量的冰水,将热电偶的补偿冷端插入其中。

3.检查空气流量旁路调节阀是否全开,电压调节电位器是否旋至最左端。

4.检查普通管支路各控制阀是否已打开,保证蒸汽和空气管线的畅通。

5.检查强化管支部各控制阀是否已关闭。

6.接通电源总闸,设定加热电压,启动电加热器开关,开始加热。

(二)实验开始

1.一段时间后水沸腾,水蒸气自行充入普通套管换热器外管,观察蒸汽排出口有恒量蒸汽排出,标志着实验可以开始。

2.约加热10min后,可提前启动鼓风机,保证实验开始时空气入口温度t1比较稳定。

3.调节空气流量旁路阀的开度,使压差计的读数为所需的空气流量值。

4.稳定5-8min可转动各仪表选择开关读取t1、t2和E值。

5.重复(3)和(4),共做5-7个空气流量值。

6.最小最大流量值一定要做。

7.在整个实验过程中,加热电压可以保持不变,也可随空气流量的变化作适当的调节。

 

(三)实验过程

转换支路,重复步骤2的内容,进行强化套管换热器的实验。

测定5-6组实验数据。

(四)实验结束

1.关闭加热开关。

2.过5min后关闭鼓风机,并将旁路阀全开。

3.切断总电源。

4.若需几天后再做实验,则应将电加热釜和冰水保温瓶中的水放干净。

 

五、实验结果

1.原始数据及数据处理

表2普通套管实验数据处理表格

普通管

1

2

3

4

5

6

ΔP/kpa

t1/℃

39

t2/℃

E/mV

tw/℃

96.7536

96.7536

96.7536

96.7536

96.7536

96.7536

t/℃

ρt1/(kg·m-3)

1.1176

1.1168

1.1226

1.1284

1.1354

1.1404

ρ/(kg·m-3)

1.0727

1.0711

1.0742

69

1.0791

1.0787

10^2*λ/(W·m-1·℃-1)

2.8601

2.8628

2.8573

2.8525

2.8487

2.8494

Cp/(kJ·kg-1·℃-1)

μ/(μPa·s)

19.8147

19.8344

19.7951

19.7606

19.7336

19.7385

Δt/℃

25

Δtm/℃

39.9999

40.6813

41.2334

41.5176

41.0587

Vt0/(m3·h-1)

34.7005

30.6157

26.3235

21.5390

14.5855

7.7777

V/(m3·h-1)

35.9719

31.7561

27.3671

22.4519

15.2657

8.1769

u/(m·s-1)

31.8061

28.0785

24.1979

19.8519

13.4978

7.2300

Q/w

249.9074

224.0989

205.1746

179.5492

133.8183

78.5472

α/W·m-2·K

98.3269

89.1663

80.2692

69.3034

51.2983

30.4471

Re

34436.3381

30326.5213

26262.7813

21637.8928

14761.5052

7902.0549

Nu

68.7585

62.2926

56.1851

48.5915

36.0152

21.3709

Pr

0.6963

0.6963

0.6963

0.6962

0.6962

0.6962

Nu/Pr

79.4722

71.9980

64.9404

56.1646

41.6290

24.7020

Ln(Re)

10.4469

10.3198

10.1759

9.9822

9.5998

8.9749

Ln(Nu)

4.2306

4.1318

4.0287

3.8834

3.5839

3.0620

Ln(Nu/Pr)

4.3754

4.2766

4.1735

4.0283

3.7288

3.2069

 

表3强化套管换热器实验数据处理表

强化管

1

2

3

4

5

6

ΔP/kpa

t1/℃

t2/℃

E/mV

tw/℃

96.5184

96.5184

96.5184

96.5184

96.2832

96.2832

t/℃

56.45

ρt1/(kg·m-3)

1.1245

1.1265

1.1334

1.1416

1.1481

1.1566

ρ/(kg·m-3)

1.0560

1.0566

1.0603

1.0647

1.0676

1.0678

10^2*λ/(W·m-1·℃-1)

2.8897

2.8886

2.8821

2.8742

2.8690

2.8687

Cp/(kJ·kg-1·℃-1)

μ/(μPa·s)

20.0262

20.0188

19.9721

19.9156

19.8787

19.8762

Δt/℃

Δtm/℃

34.0011

34.0359

34.7584

35.6591

35.8478

34.9483

Vt0/(m3·h-1)

30.6248

27.4721

23.4980

19.4161

14.8263

5.6964

V/(m3·h-1)

32.3467

29.0498

24.9192

20.6577

15.8253

6.1229

u/(m·s-1)

28.6008

25.6856

22.0334

18.2655

13.9927

5.4139

Q/w

337.5761

309.3329

278.8111

243.7684

196.2152

83.7793

α/W·m-2·K

158.0151

144.6469

127.6645

108.7997

87.1145

38.1531

Re

30163.6339

27114.0369

23394.2097

19530.2864

15030.2441

5817.0698

Nu

109.3654

100.1488

88.5913

75.7083

60.7278

26.5999

Pr

0.6965

0.6965

0.6964

0.6964

0.6963

0.6963

Nu/Pr

126.3902

115.7394

102.3856

87.4995

70.1874

30.7434

Ln(Re)

10.3144

10.2078

10.0602

9.8797

9.6178

8.6686

Ln(Nu)

4.6947

4.6067

4.4840

4.3269

4.1064

3.2809

Ln(Nu/Pr)

4.8394

4.7513

4.6287

4.4716

4.2512

3.4257

2.实验数据处理过程

以普通管第一组数据为例

孔板流量计压差ΔP=kPa,进口温度t1=43.6℃,出口温度t2=66.8℃,壁面温度热电势4.06mV.

已知数据及有关常数:

(1)传热管内径di及流通段面积F

di==

F=л(di22/4=2

(2)传热管有效长度L及传热面积SiL=

Si=лLdi=3.142*1.00*0.0200=2

(3)t1为孔板处空气的温度,为由此值查得空气的平均密度ρ

当t1=℃时,ρ=1.1176kg/m3

(4)传热管,测量段上空气平均物性常数的确定

先算出测量段上空气的定性温度t/℃

t=(t1+t2)/2=(43.6+66.8)/2=℃

查得:

测量段上空气的平均密度ρ=(kg/m3)

测量段上空气的平均比热Cp=1005(J/kg·k)

测量段上空气的平均导热系数λ28601(W/m·k)

测量段上空气的平均黏度μ=(µPa·s)

测量段上空气的平均普朗特准数的0.4次方为:

Pr=

(5)空气流过测量段上平均体积V(m3/h)的计算:

=34.7005(m3/h)

(m3/h)

(6)冷热流体间的平均温度差Δtm/℃的计算:

Δtm=℃

(7)其余计算

α=Q/(ΔtmSi)=249.9074/(

0.06284)=98.3269(W/m2·℃)

传热准数Nu=α

di/λ=

28601=

测量段上空气的平均流速u=V/(F

3600)=(m/s)

雷诺准数Re=di

u

ρ/μ

198147=1

(8)作图,回归得到准数关联式Nu=ARem中的系数

回归图如图3所示。

(分析见2.Ln(Nu)-Ln(Re)回归图及对流传热准数关联式)

由Nu=ARem,可得lnNu=lnA+mlnRe

所以以lnNu——lnRe作图,可得一直线,直线的斜率是m,截距是lnA.

作图得,m=0.7922,lnA=-4.036,R2

所以

(9)作图,回归得到准数关联式

中的系数()

回归图如图5所示。

(分析见3.Ln(Nu/Pr)-Ln(Re)回归图及对流传热准数关联式)

可得ln(Nu/Pr)=lnC+mlnRe

所以以ln(Nu/Pr)——lnRe作图,可得一直线,直线的斜率是m,截距是lnC.

作图得,m=0.7922,lnC=-3.891,R2

所以C2043

即Nu=2043RePr

2.Ln(Nu)-Ln(Re)回归图及对流传热准数关联式

由Nu=ARem,可得lnNu=lnA+mlnRe

所以以lnNu-lnRe作图,可得一直线,直线的斜率是m,截距是lnA.

922,lnA=-4.036,R2

所以A=0.01767

即Nu=0.01767Re

由Nu=ARem,可得lnNu=lnA+mlnRe

所以以lnNu-lnRe作图,可得一直线,直线的斜率是m,截距是lnA.

作图得,m=0.8603,lnA=-4.173,R2

所以A=0.01541

即Nu=0.01541Re0.8603

3.Ln(Nu/Pr)-Ln(Re)回归图及对流传热准数关联式

可得ln(Nu/Pr)=lnC+mlnRe

所以以ln(Nu/Pr)-lnRe作图,可得一直线,直线的斜率是m,截距是lnC.

作图得,m=0.7922,lnC=-3.891,R2

所以C2043

即Nu=2043RePr

可得ln(Nu/Pr)=lnC+mlnRe

所以以ln(Nu/Pr)-lnRe作图,可得一直线,直线的斜率是m,截距是lnC.

作图得,m=0.8602,lnC=-,R29

所以C1781

即Nu=0.01781Re0.8602Pr

 

4.两个实验的Nu—Re的关系图:

类别

Nu=ARem

普通套管

Nu=0.01767Re

Nu=2043RePr

强化套管

Nu=0.01541Re0.8603

Nu=0.01781Re0.8602Pr

结论

对流传热准数关联式中,强化套管的系数A和C都比普通套管的小,强化套管的系数m比普通套管的大。

这些系数的差别,表明了强化套管传热能力与普通套管的明显不同,强化套管提高了换热器的换热能力。

 

5.强化比的计算

同一流量下,强化管的努塞尔准数Nu与普通管的努塞尔准数Nuo之比,即Nu/Nuo.

当流量等于28.0785m3/h时,Nuo=

当流量等于m3/h时,Nu=

由于m3/h≠m3/h

所以强化比Nu/Nuo近似等于1/6≈

 

1)翅片:

在管子表面加装翅片,增加传热面积。

2)改变壳程挡板结构:

尽可能将原折流板的流体横向流动变为平行于换热管的纵向流动,以消除死区。

3)改变管束支承结构:

将管壳式换热器中折流板改成折流杆。

壳程流动方向呈轴向;流动阻力减小,为弓形折流板的50%;结垢速率变慢;消除弓形折流板造成的局部腐蚀和磨损,减少管子的振动,延长使用寿命。

六、思考题

1.管内空气流动速度对传热膜系数有何影响?

当空气速度增大时,空气离开热交换器时的温度将升高还是降低?

为什么?

答:

①传热膜系数

,所以管内空气流速增大,会增大传热膜系数。

②空气流速增大,离开热交换器时的温度将下降,因为空气流速增大,在吸收更多的热量之前便被带走了,所以出口温度会下降。

2.如果采用不同压强的蒸汽进行实验,对

式的关联有无影响?

答:

无影响。

采用不同压强的蒸汽会改变蒸汽传递的热量大小,可能会影响换热器出口的温度t2值,进而改变

1值,但对

式间的关联无影响。

3.强化传热要以什么为代价?

答:

本实验强化套管是采用在换热器内管插入螺旋线圈来实现的,额外加入的金属螺旋线圈可强化传热,但是得花费额外的费用。

4.强化传热的效果一般如何评价?

采用什么作为评价的指标?

答:

单纯研究强化手段的强化效果,不考虑阻力影响,用强化比作为指标,形式是:

,其中Nu是强化管的努塞尔准数,Nu0是普通管的努塞尔准数,显然,强化比

>1,而且它的值越大,强化效果越好。

5.比空气为介质的传热实验,其雷诺数Re最好应如何计算?

答:

先求出定性温度t=(t1+t2)/2,进而查表得到定性温度下的空气密度

及动力粘度

,再由实验得到

,求得

,进而解得u,由

得到雷诺数。

6.为什么要整理成Nu-Re准数方程,而不整理成Nu与流量关系?

答:

因为Nu-Re准数方程表达式较为简单,且均为无量纲数,计算方便,而Nu与流量关系较为复杂,计算不方便。

Nu-Re还可通过最小二乘法方便地计算出其中常数A、m值。

 

7.环隙间饱和蒸汽的压强产生变化,对关内空气给热系数的测量是否发生影响?

答:

会有影响,蒸汽压强不同,会导致传热量发生改变,会改变单位面积上传热量的大小,亦即

1的数值会发生改变,测量时须保持恒定的压强。

8.空气速度和温度对给热系数有何影响?

在不同的温度下是否会得出不同的给热系数的关联式?

答:

空气流速越快,吸附的能量少,传热系数越小,空气温度越高,能吸收的热量少,传热系数也会越小。

在不同温度下得出的给热系数关联式会有区别,主要体现在常数Nu=ARem中A、m会有所区别。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1