数值分析第四版习题与答案.docx

上传人:b****5 文档编号:4754881 上传时间:2022-12-08 格式:DOCX 页数:111 大小:184.48KB
下载 相关 举报
数值分析第四版习题与答案.docx_第1页
第1页 / 共111页
数值分析第四版习题与答案.docx_第2页
第2页 / 共111页
数值分析第四版习题与答案.docx_第3页
第3页 / 共111页
数值分析第四版习题与答案.docx_第4页
第4页 / 共111页
数值分析第四版习题与答案.docx_第5页
第5页 / 共111页
点击查看更多>>
下载资源
资源描述

数值分析第四版习题与答案.docx

《数值分析第四版习题与答案.docx》由会员分享,可在线阅读,更多相关《数值分析第四版习题与答案.docx(111页珍藏版)》请在冰豆网上搜索。

数值分析第四版习题与答案.docx

数值分析第四版习题与答案

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

第四版

数值分析习题

第一章绪论

设x>0,x的相对误差为δ,求lnx的误差.

设x的相对误差为2%,求xn的相对误差.

下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出

它们是几位有效数字:

x11.1021,x20.031,x3385.6,x456.430,x571.0.

利用公式(3.3)求下列各近似值的误差限:

(i)x1*x*2x*4,(ii)x1*x*2x3*,(iii)x2*/x*4,其中x1*,x*2,x3*,x*4均为第3题所给的数.

计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少?

设Y028,按递推公式

YnYn11783

100(n=1,2,⋯)

计算到Y100.若取783≈27.982(五位有效数字),试问计算Y100将有多大误差?

求方程x256x10的两个根,使它至少具有四位有效数字(783≈27.982).

当N充分大时,怎样求

1

2dx

1x2

1㎝

正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过

12

Sgt2

设2假定g是准确的,而对t的测量有±0.1秒的误差,证明当t增加时S的绝对误差增加,而相对误差却减小.

序列{yn}满足递推关系yn10yn11(n=1,2,⋯),若y021.41(三位有效数字),计

算到y10时误差有多大?

这个计算过程稳定吗?

计算f(21),取21.4,利用下列等式计算,哪一个得到的结果最好?

16,(322)3,13,99702.

(21)6(322)3

f(x)ln(xx21),求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?

学习参

改用另一等价公式

ln(xx21)ln(xx21)计算,求对数时误差有多大?

1010

x11010x21010;

x1x22.

14.试用消元法解方程组12假定只用三位数计算,问结果是否可靠?

1

sabsinc,0c

15.已知三角形面积

2其中c为弧度,2,且测量a,b,c的误差分别为

a,b,c.证明面积的误差s满足

ssaabbcc.

第二章插值法

1.根据(2.2)定义的范德蒙行列式,令

Vn(x)Vn(x0,x1,,xn1,x)

x0x02x0n

xn1xn1xn1

xx2xn

证明Vn(x)是n次多项式,它的根是x0,,xn1,且

Vn(x)Vn1(x0,x1,,xn1)(xx0)(xxn1).

2.当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式.

3.给出f(x)=lnx的数值表用线性插值及二次插值计算ln0.54的近似值.

x

0.4

0.5

0.6

0.7

0.8

lnx

-0.916291

-0.693147

-0.510826

-0.357765

-0.22314

4

4.给出cosx,0°≤x≤90°的函数表,步长h=1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cosx近似值时的总误差界.

5.设xkx0kh,k=0,1,2,3,求xm0axxx3l2(x).

6.设xj为互异节点(j=0,1,⋯,n),求证:

n

xjklj(x)xk(k0,1,,n);

i)j0

学习参

k

(xjx)klj(x)k1,2,,n).

ii)j0

12设f(x)C2a,b且f(a)f(b)0,求证maaxbxf(x)8(ba)maaxbxf(x).在4x4上给出f(x)ex的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过106,问使用函数表的步长h应取多少?

n44

若yn2,求yn及yn.

如果f(x)是m次多项式,记f(x)f(xh)f(x),证明f(x)的k阶差分kml

f(x)(0km)是mk次多项式,并且f(x)0(l为正整数).

证明(fkgk)fkgkgk1fk.

n1n1

fkgkfngnf0g0gk1fk.

证明k0k0

n12yjyny0.

证明j0

若f(x)a0a1xan1xanx有n个不同实根x1,x2,,xn,证明

n

j1

k

x

f(xj)

j0,0kn2;an,kn1.

证明n阶均差有下列性质

若F(x)cf(x),则Fx0,x1,,xncfx0,x1,,xn;

若F(x)f(x)g(x),则Fx0,x1,,xnfx0,x1,,xngx0,x1,,xn.

f(x)x7x43x1,求f2,2,,2及f2,2,,2.

证明两点三次埃尔米特插值余项是

R3(x)f(4)()(xxk)2(xxk1)2/4!

(xk,xk1)并由此求出分段三次埃尔米特插值的误差限.

求一个次数不高于4次的多项式P(x),使它满足P(0)P(k1)并由此求出分段三次埃尔米特插值的误差限.

试求出一个最高次数不高于4次的函数多项式P(x),以便使它能够满足以下边界条件P(0)P(0)0,P

(1)P

(1)1,P

(2)1.

设f(x)Ca,b,把a,b分为n等分,试构造一个台阶形的零次分段插值函数n(x)并

证明当n时,n(x)在a,b上一致收敛到f(x).

2

设f(x)1/(1x),在5x5上取n10,按等距节点求分段线性插值函数Ih(x),

7.

8.

9.

10.

11.

12.

13.

14.

15.i)ii)

16.

17.

18.

19.

20.

21.

计算各节点间中点处的

Ih(x)与f(x)的值,并估计误差

 

学习参

22.求f(x)x在a,b上的分段线性插值函数Ih(x),并估计误差

23.求f(x)x4在a,b上的分段埃尔米特插值,并估计误差

24.给定数据表如下:

xj

0.25

0.30

0.39

0.45

0.53

yj

0.5000

0.5477

0.6245

0.6708

0.7280

试求三次样条插值S(x)并满足条件

i)S(0.25)1.0000,S(0.53)0.6868;

ii)S(0.25)S(0.53)0.

25.若f(x)Ca,b,S(x)是三次样条函数,证明

bf(x)2dxbS(x)2dxbf(x)S(x)2dx2bS(x)f(x)S(x)dx

i)aaaa;

ii)若f(xi)S(xi)(i0,1,,n),式中xi为插值节点,且ax0x1xnb,则

b

S(x)f(x)S(x)dxS(b)f(b)S(b)S(a)f(a)S(a)

a

26.编出计算三次样条函数S(x)系数及其在插值节点中点的值的程序框图(S(x)可用(8.7)式的表达式).

第三章函数逼近与计算

1.(a)利用区间变换推出区间为a,b的伯恩斯坦多项式.

(b)对f(x)sinx在0,/2上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较.

2.求证:

(a)当mf(x)M时,mBn(f,x)M.(b)当f(x)x时,Bn(f,x)x.

3.在次数不超过6的多项式中,求f(x)sin4x在0,2的最佳一致逼近多项式.

4.假设f(x)在a,b上连续,求f(x)的零次最佳一致逼近多项式.maxx3ax

5.选取常数a,使0x1达到极小,又问这个解是否唯一?

6.求f(x)sinx在0,/2上的最佳一次逼近多项式,并估计误差.

7.求f(x)ex在0,1上的最佳一次逼近多项式.

8.如何选取r,使p(x)xr在1,1上与零偏差最小?

r是否唯一?

9.设f(x)x43x31,在0,1上求三次最佳逼近多项式.

学习参

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

令Tn(x)Tn(2x1),x0,1,求T0*(x),T1*(x),T2*(x),T3(x)

试证Tn(x)是在0,1上带权

的正交多项式

在1,1上利用插值极小化求1f(x)tg1x的三次近似最佳逼近多项式

设f(x)ex在1,1上的插值极小化近似最佳逼近多项式为Ln(x),若fLn有界,证明对任何n1,存在常数n、n,使

设在

(x)11x1x2

28

33

x

24

nTn1(x)f(x)Ln(x)nTn1(x)(1x1).

1541655

xx

3843840,试将(x)降低到3次多

项式并估计误差

在1,1上利用幂级数项数求f(x)sinx的3次逼近多项式,使误差不超过0.005.f(x)是a,a上的连续奇(偶)函数,证明不管n是奇数或偶数,f(x)的最佳逼近多项式

*

Fn(x)Hn也是奇(偶)函数.

求a、b使0axbsinxdx为最小.并与1题及6题的一次逼近多项式误差作比较f(x)、g(x)C1a,b,定义

bb

(a)(f,g)af(x)g(x)dx;(b)(f,g)af(x)g(x)dxf(a)g(a);

aa

问它们是否构成内积?

用许瓦兹不等式(4.5)估计

1xdx

01x

的上界,并用积分中值定理估计同一积分的上下界

并比较其结果

选择a,使下列积分取得最小值

:

1(xax2)2dx,

xax2dx

使得其

设空间span1,x,2spanx100,x101,分别在1、2上求出一个元素为xC0,1的最佳平方逼近,并比较其结果.

f(x)x在1,1上,求在1span1,x,x上的最佳平方逼近.

sin(n1)arccosx

un(x)2

1x2是第二类切比雪夫多项式,证明它有递推关系

un1x2xunxun1x

f(x)sinx

将2在1,1上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.

把f(x)arccosx在1,1上展成切比雪夫级数.

学习参

2

26.用最小二乘法求一个形如yabx的经验公式,使它与下列数据拟合,并求均方误差

xi

19

25

31

38

44

yi

19.0

32.3

49.0

73.3

97.8

 

27.观测物体的直线运动,得出以下数据

时间t(秒)

0

0.9

1.9

3.0

3.9

5.0

距离s(米)

0

10

30

50

80

110

 

求运动方程.

28.在某化学反应里,根据实验所得分解物的浓度与时间关系如下

时间

0

5

10

15

20

25

30

35

40

45

50

55

浓度

0

1.27

2.16

2.86

3.44

3.87

4.15

4.37

4.51

4.58

4.62

4.6

4

用最小二乘拟合求yf(t).

29.编出用正交多项式做最小二乘拟合的程序框图.

30.编出改进FFT算法的程序框图.

31.现给出一张记录xk4,3,2,1,0,1,2,3,试用改进FFT算法求出序列xk的离散频谱

Ck(k0,1,,7).

第四章数值积分与数值微分

1.确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具

有的代数精度:

h

(1)hf(x)dxA1f(h)A0f(0)A1f(h)

(1)h

2h

(2)2hf(x)dxA1f(h)A0f(0)A1f(h)

(3)1f(x)dxf

(1)2f(x1)3f(x2)/3

(4)

f(x)dxhf(0)f(h)/1ah2f(0)f(h)

2.分别用梯形公式和辛普森公式计算下列积分

(1)

04xx2dx,n8

1

1(1ex)2

1(1e)dx,n10

(2)0x

学习参

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

xdx,n4

(3)1;

直接验证柯特斯公式

用辛普森公式求积分推导下列三种矩形求积公式

(4)06sin2dx,n6

(2.4)具有5次代数精度.1x

0edx并计算误差.

算误差

(1)

(2)

f(x)dx(ba)f(b)

2

f()(ba)2

(3)

ab

f(x)dx(ba)f

(2)f2(4)(ba)3

224

b

af(x)dx

证明梯形公式(2.9)和辛普森公式(2.11)当n时收敛到积分

b

af(x)dx,问要将积分区间a,b分成多少等分,才能保证误差不

用复化梯形公式求积分超过(设不计舍入误差

)?

21

20exdx5

0,要求误差不超过105.

Sa21(c)2sin2d卫星轨道是一个椭圆,椭圆周长的计算公式是0a,这里a是椭圆

的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h为近地点距离,H为远地点距离,R6371公里为地球半径,则a(2RHh)/2,c(Hh)/2.我国第一颗人造

用龙贝格方法计算积分

卫星近地点距离h439公里,远地点距离H2384公里,试求卫星轨道的周长.

35

24

3!

n25!

n4试依据nsin(/n)(n3,6,12)的值,用外推算

nsin证明等式n法求的近似值.

用下列方法计算积分龙贝格方法;

1dyy并比较结果.

(1)

(2)

(3)

三点及五点高斯公式;

将积分区间分为四等分,用复化两点高斯公式.

1

用三点公式和五点公式分别求f(x)(1x)2在x1.0,1.1和1.2处的导数值,并估计误差.f(x)的值由下表给出:

1.0

1.1

1.2

1.3

1.4

f(x)

0.2500

0.2268

0.2066

0.1890

0.1736

f(x)dx(ba)f(a)f()(ba)2

2

学习参

第五章常微分方程数值解法

1.就初值问题yaxb,y(0)0分别导出尤拉方法和改进的尤拉方法的近似解的表达

12yaxbx式,并与准确解2

2.用改进的尤拉方法解初值问题

相比较。

取步长h=0.1计算,并与准确解

yxy,0x1;

y(0)1,

x

yx12e相比较。

3.用改进的尤拉方法解

取步长h=0.1计算y(0.5),

4.用梯形方法解初值问题

2

yxxy;

y(0)0,

x2

并与准确解yexx1相比较。

yy0;y(0)1,

证明其近似解为

2hn,

2h,并证明当h0时,它原初值问题的准确解yex。

yn

5.利用尤拉方法计算积分

xt2

0etdt

在点x0.5,1,1.5,2的近似值。

6.取h=0.2,用四阶经典的龙格-库塔方法求解下列初值问题

yxy,0x1;

y(0)1,

y3y/(1x),0x1;

y(0)1.

1)

2)

7.证明对任意参数t,

列龙格-库塔公式是二阶的:

h

yn1ynh(K2K3);

2

K1f(xn,yn);

K2f(xnth,ynthK1);

K3f(xn(1t)h,yn(1t)hK1).

8.证明下列两种龙格-库塔方法是三阶的:

学习参

 

h

yn1ynh(K13K3);

4

K1f(xn,yn);

hh

K2f(xn3,yn3K1);

33

22

K3f(xnh,ynhK2);

1)33

yn1yn9h(2K13K24K3);K1f(xn,yn);

hh

K2f(xnh2,yn2hK1);

33

K3f(xnh,ynhK2).

2)44

9.分别用二阶显式亚当姆斯方法和二阶隐式亚当姆斯方法解下列初值问题:

y1y,y(0)0,

取h0.2,y00,y10.181,计算y(1.0)并与准确解y1ex相比较。

10.证明解yf(x,y)的下列差分公式

1h

yn12(ynyn1)4(4yn1yn3yn1)

是二阶的,并求出截断误差的首项。

11.导出具有下列形式的三阶方法:

yn1a0yna1yn1a2yn2h(b0ynb1yn1b2yn2).

12.将下列方程化为一阶方程组:

y3y2y0,

1)

y(0)1,y(0)1;

y0.1(1y2)yy0,

2)

y(0)1,y(0)0;

x(t)x3,y(t)y3,r

x2y2

3)

rr

x(0)0.4,x(0)0,y(0)

0,y(0)2.

13.取h=0.25,用差分方法解边值问题

yy0;

y(0)0,y

(1)1.68.

14.对方程yf(x,y)可建立差分公式

2

yn12ynyn1hf(xn,yn),

试用这一公式求解初值问题

学习参

验证计算解恒等于准确解

y1;y(0)y

(1)0,

y(x)

2

xx

15.取h=0.2用差分方法解边值问题

(1x2)yxy3y6x3;y(0)y(0)1,y

(1)2.

第六章方程求根

2

1.用二分法求方程x2x10的正根,要求误差<0.05。

2.用比例求根法求f(x)1xsinx0在区间[0,1]内的一个根,直到近似根xk满足精度|f(xk)|0.005时终止计算。

3.为求方程x3x210在x01.5附近的一个根,设将方程改写成下列等价形式,并

建立相应的迭代公式

1)

x11/x2,

迭代公式

xk111/xk;

2)x31x2,迭代公式xk11xk;

x21

3)xx1,迭代公式xk11/xk1。

试分析每种迭代公式的收敛性,并选取一种公式求出具有四位有效数字的近似根4.比较求ex10x20的根到三位小数所需的计算量

1)在区间[0,1]内用二分法;

2)用迭代法xk1(2e)/10,取初值x00。

5.给定函数f(x),设对一切x,f(x)存在且0mf(x)M,证明对于范围内02/M的任意定数λ,迭代过程xk1xkf(xk)均收敛于f(x)的根x。

6.已知x(x)在区间[a,b]内只有一根,而当a

|(x)|k1,

试问如何将x(x)化为适于迭代的形式?

将xtgx化为适于迭代的形式,并求x=4.5(弧度)附近的根。

3

7.用下列方法求f(x)x33x10在x02附近的根。

根的准确值x=1.87938524⋯要,求计算结果准确到四位有效数字。

1)用牛顿法;

2)用弦截法,取x01,x11.9;

学习参

3)用抛物线法,取x01,x13,x2。

8.用二分法和牛顿法求xtgx0的最小正根。

9.研究求a的牛顿公式

xk1(xkk12k

a),x00,xk

证明对一切k1,2,,xka且序列x1,x2,是递减的。

10.对于f(x)0的牛顿公式xk1xkf(xk)/f(xk),证明

Rk

(xk

xk1)/(xk1xk2

收敛到f(x)/(2f(x)),这里x为f(x)0的根。

11.试就下列函数讨论牛顿法的收敛性和收敛速度

1)

f(x)

x,x0;

x,x0;

f(x)322)3x2

x2,x0;

x0.

12.应用牛顿法于方程

x2a0,导出求立方根3a的迭代公式,并讨论其收敛性。

13.应用牛顿法于方程的值。

14.应用牛顿法于方程式,并求

15.证明迭代公式

f(x)1

a0

x2

f(x)xna0和

lkim(na

导出求a的迭代公式

,并用此公式求

115

f(x)1xan

0

,分别导出求

na的迭代公

xk1)/(axk).

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 人力资源管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1