盾构过中间风井施工方案机福区间.docx

上传人:b****3 文档编号:4750482 上传时间:2022-12-08 格式:DOCX 页数:17 大小:358.03KB
下载 相关 举报
盾构过中间风井施工方案机福区间.docx_第1页
第1页 / 共17页
盾构过中间风井施工方案机福区间.docx_第2页
第2页 / 共17页
盾构过中间风井施工方案机福区间.docx_第3页
第3页 / 共17页
盾构过中间风井施工方案机福区间.docx_第4页
第4页 / 共17页
盾构过中间风井施工方案机福区间.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

盾构过中间风井施工方案机福区间.docx

《盾构过中间风井施工方案机福区间.docx》由会员分享,可在线阅读,更多相关《盾构过中间风井施工方案机福区间.docx(17页珍藏版)》请在冰豆网上搜索。

盾构过中间风井施工方案机福区间.docx

盾构过中间风井施工方案机福区间

一、工程概况

机场北站~福永站区间风井,位于规划地块内,周边无建(构)筑物,风井西侧约55m处有福永河,河宽约36m。

风井往机场北站及福永站方向均与盾构区间连接(矿山法初支盾构空推),风井施工期间作为矿山法施工竖井,预留矿山法出土孔。

区间风井主体长32米,宽26米,地下三层结构。

风井中心里程为ZDK36+196.958;起点里程ZDK36+180.953;终点里程ZDK36+212.960。

风井设三个风亭(一个新风亭、两个活塞风亭)和一个紧急疏散口,均设在规划地块内,预留合建条件。

本方案主要讨论如何顺利使盾构机在较短时间内快速、高效通过中间风井实现再次始发掘进。

图一中间风井与盾构隧道平面位置关系图

 

图二盾构隧道与风井相对位置剖面图

2、洞门加固方案

盾构机在到达中风井前,为了维持隧道与风井接口处地层的稳定,避免盾构机到达时因地下水流失而导致地面塌方或塌陷,必须根据实际情况对盾构到达中风井段进行地基处理。

方案一:

1)加固方法

中间风井盾构洞门加固段采用Φ108大管棚辅助施工。

2)长管棚加固施工工艺

⑴管棚布置如管棚布置图所示。

管棚孔口位置在盾构拱部120°范围内,纵向16-22m(根据岩石深度)进行管棚注浆,开挖轮廓线外放300mm位置布置,管棚环向中心间距300mm。

(可根据地质情况适当调整,以保证盾构机顺利到达为准),外插角约1°。

⑵注浆管棚采用Φ108mm,壁厚6mm的无缝钢管,分节安装,两节之间用丝扣连接,注浆钢管上钻注浆孔,孔径Φ10mm,孔间距200mm,呈梅花型布置。

钢管尾部(孔口段)2.0m不钻花孔作为止浆段。

(图三中间风井管棚布置图)

 

 

图三中间风井管棚布置图

⑶浆液采用水泥砂浆,初拟参数:

水泥浆水灰比0.8:

1~1:

1,注浆压力:

采用0.2~0.4MPa,施工中应据实际地质情况,并通过试验确定有关施工参数。

⑷从管棚导向管按设计钻孔,钻孔时将钢管随钻头一起钻入地层内,当达到设计深度后停机。

钻头用长约150mm的Φ121钢管,并在钢管一端管口焊接合金制成.钻头与钢管、钢管和钢管间用丝扣连接。

⑸向管棚内注浆.注浆顺序先下后上,全孔可采用后退式分段注浆方式。

⑹管棚导向管应严格定位,管棚钻进过程中应采用水平测斜仪经常量测管棚的偏斜度,发现偏斜值超出设计要求时,应及时纠偏。

⑺施工误差:

钻孔水平容许偏距沿相邻钢管方向不应大于100mm,垂直偏距沿隧道内侧方向不应大于200mm(对管棚前端,而非管棚孔口)。

⑻施工中应加强现场监测,及时反馈信息,并及时修正设计。

补充方案二:

采用地面袖阀管注浆加固,加固的目的主要是提高洞顶以上软弱地层(硬塑状砂质粘性土、可塑状砂质粘性土)的强度和防水效果,根据地质情况以及以往对类似地层的加固经验,选取Φ52袖阀管注浆对地层进行加固,间距0.6m*0.6m,梅花形布置,加固纵向长度为9m,横向为隧道轮廓线外1m,竖直方向为隧顶往上3m。

技术要求:

1)浆液采用水泥浆水灰比1:

1,使用42.5R普通硅酸盐水泥,袖阀管施工完毕,应对加固体进行检验,必须满足28d龄期无侧限抗压强度q28>0.8MPa,渗透系数小于1×10-6cm/s。

若达不到要求,应及时弥补注浆;

2)注浆加固深度范围内,若遇中风化、微风化地层则该地层范围不必加固;

 

图四中间风井端头补充加固

三、过中风井方案比选

现代地铁的设计中,在线路较长的区间中间一般均设计有通风竖井,即中间风井。

竖井与盾构法隧道相连。

因此区间隧道采用盾构法施工时,存在盾构机必须经过竖井的问题,一般来说盾构过中间风井通常有三种方法:

方案

具体内容

优点

缺点

方案一

盾构机二次始发过站

拼装负环较少,

节约成本,风险较小

反力架加固要求较高,整环负环管片拆除较麻烦;

方案二

拼装整环管片通过

快捷,时间较短

需要负环管片较多成本较高,拆除难度较大

方案三

拼装半环+整环管片通过

需要时间较短,拆除较方便

准备工作要求较高,施工时难度较大

在目前工期十分紧迫的情况下,同时考虑到安全方面的因素(风井跨度较大,纵向30m),而且经项目部多次讨论并借鉴其它项目成功实例,决定采用盾构机二次始发过站的方式通过。

四、施工方案

1、方案简介

提前施工弧形砼导台、钢导轨。

盾构机通过中间风井,采用整体平移+二次始发。

盾构机到达中间风井后,利用两台油顶将盾构机整体向前平移,距离大里程洞门1m时停止,安装并加固反力架,拼装负环进行二次始发,负环管片只贴软木衬垫,不需要贴止水条。

在盾构机台车完全顺利进入隧道后,根据施工总体安排,拆除中间风井内的临时管片,恢复中间风井结构施工。

2、施工工作内容及工艺流程

施工前准备

盾构进洞前,中间风井洞门复测

盾构进洞

加焊防滚楔块

盾构平移(顶推)

钢支撑加工

反力架加固

管环加固

负环管片拼装(全环)

盾构出洞

盾构机过中间风井是指从盾构机顺利贯通进入中间风井(也叫进洞)到盾构经过导台进行第二次始发脱出中间风井(也叫出洞)的整个施工过程。

其工作内容主要包括:

施工前准备(砼导台、导轨设计施工等)、进出洞洞门位置复核测量、盾构平移推进及管片拼装、管环的加固等。

盾构过中间风井施工工艺流程如下图所示。

 

图五盾构过中间风井施工工艺流程图

五、施工准备

为确保盾构机顺利通过中间风井,盾构机到达前应做好以下准备工作:

1、加固两端洞门及预埋密封环板。

2、C30砼导台施工及导轨预埋。

导台里程为ZDK36+180.953~ZDK36+212.96。

导台截面形状与盾构机外壳类似,半径为盾体的半径加钢轨轨头厚度,钢导轨顶面所处弧面半径同盾体半径,钢导轨预埋于导台内,导台采用C30混凝土回填,弧形导台与盾构隧道及中间风井相对关系图见图六。

图六弧形导台与盾构隧道及中间风井相对关系图

导台及导轨施工要点如下:

⑴导台及导轨严格按图设计标高及坡度进行控制;

⑵钢导轨定位要准确,导轨顶面要平顺;

⑶砼导台施工时一要保证模板的弧度,二要保证浇注混凝土时模板的稳定性

如果在拆模时发现导台不够平整,则必须对它进行修整以到达设计要求。

⑷为防止盾构机进出洞时出现“磕头”现象,盾构机进洞时导台及导轨标高比理论值降低50mm,而在出洞前导台及导轨标高则必理论值提高50mm。

六、盾构通过施工

1、盾构进洞

⑴在盾构机到达洞门之前,必须提前做好以下准备工作:

a、安装洞门密封装置(洞门密封圈及B板在盾构机刀盘露头后安装,避免盾构机破洞时的混凝土块砸坏密封板);

b、在中间风井洞门口准备好砂袋、水泵、水管、方木、风炮等应急物质和工具;特别是作好破除围护桩的准备,保证盾构机及时进入中间风井;

c、准备好双液注浆泵及水玻璃、水泥各一批;

d、盾构机到达前,在钢轨上预先涂抹油脂,减少盾体与钢轨的摩擦力。

⑵在盾构机到达前50米对中间风井附近所有测量控制点进行一次整体、系统的控制测量复测和联测,对所有控制点的坐标进行精密、准确地平差计算,并对激光经纬仪复检和盾构机机头位置人工测量。

盾构贯通前30米和10米对TCA托架三维坐标进行人工复测。

破洞前30米盾构机姿态保持:

机头水平偏差0~10mm,机头竖直偏差0~+10mm,俯仰角、偏转角允许范围±2mm/m;

⑶在盾构机机头进入距中风井洞门15米范围后,首先减小推力、降低推进速度和刀盘转速并控制出土量。

无论在何种情况下,推进油缸压力不得大于100bar,且盾构机推进速度小于20mm/min。

在抵达洞门的最后三环,须进一步减小推力、降低推进速度,掘进速度控制在5~10mm/min;

⑷中风井洞门下方堆放一定量的砂包作为缓冲层,以便保护密封装置。

⑸盾构进入洞门后,洞门密封圈必须用钢丝绳拉紧。

2、盾构管片拼装

中间风井段管片排列方式如下:

盾构顺利顶推至达二次始发位置后,拼装整环负环,直线前进,直到盾构完全进入洞门。

3、中间风井管片支撑

为了提供盾构步进和二次始发的反力,保证二次始发的第“零”环管片定位准确,有效控制二次始发时管片的错台量,必须做好管片支撑措施。

管片支撑分为底部支撑、两侧支撑、顶部支撑三部分(见下面中间风井管片支撑图),图中型钢全部采用[18a。

⑴底部支撑:

当管片脱出盾尾后,导台钢轨与管片之间存在150mm间隙,每环垫2块木楔,防止管片下沉。

⑵两侧支撑:

在风井段设置斜向支撑,管片脱出盾尾后,及时利用钢管和木楔子固定管片与A1、A3块管片,防止管片向两侧偏移。

⑶顶部支撑(或底部钢丝绳):

为了防止管片上浮,对整环管片用钢丝绳进行捆绑并固定于导台预埋件上,千斤顶反力由反力架提供。

图七中间风井管片支撑图

4、盾构在中风井内推进

⑴刀盘在推进过程不宜旋转,推进时仅使用下部千斤顶(C组),推进速度控制在10~20mm/min以内。

⑵为防止盾构机在中风井段推进过程中旋转,在盾体两侧加焊防滚楔块;

⑶过站段每环管片在脱离盾尾超过一半后,及时下垫楔形方木塞紧,管片与导台间的空隙用细砂填充;

⑷盾构姿态由于导台在浇注时已确定,则盾构姿态应与导台一致。

5、在中间风井内进行机械维护、检修

当盾构机机头到达中间风井位置时,组织机械、电气专业人员对盾体部件进行维护和检修。

内容主要包括:

刀具、盾尾密封刷检查更换。

6、过中风井后再次始发段的推进

盾构机从中风井再次始发所用反力由反力架提供,始发推进阶段总推力按500吨进行设计,因此在始发推进过程中必须注意:

⑴中风井和出洞后6环千斤顶总推力应控制在500吨以内,速度控制在20mm/min以内。

⑵推进过程中,千斤顶推力的调节应平稳,防止推力突变;

⑶为防止盾构机推进过程中盾体滚动,在盾体上焊接防滚楔块;

⑷每环管片脱出盾尾超过管环宽度一半时,在管环底部及时塞楔形方木并灌砂回填管环与导台间的空隙;

⑸在管环的3、9、12点位置设置方木撑以防管环整体松动;

⑹做好注浆工作,防止进入洞门后的最初几环管片下沉,必要时注双液浆;

⑺加强出洞期间地面沉降的监测;

⑻出洞前所拼装的管片均采用单面楔形管片。

七、常见问题的预防和处理

1、进洞时,盾构机“撞头”,导台破碎

盾构推进根据洞门复测时的姿态,实时调整掘进姿态贯通,当导台标高与洞门标高一致,而刀盘比盾体大,这样容易出现盾构机“撞头”、导台破碎现象。

为了避免类似情况出现,本方案采取以下三条控制:

⑴控制盾构机进洞前的姿态,机头竖直偏差控制在0~+10mm;

⑵浇注砼导台及预埋钢导轨时,降低进洞位置处导台及导轨标高,中间风井该处施工控制标高比设计标高低50mm,附图二、三中导台及导轨施工控制标高已对此加以考虑;

⑶在进洞时导台上方离洞门5米范围内铺满砂袋,防止贯通时洞门混凝土掉下来砸伤导台。

2、到中风井出洞时,盾构机“磕头”

始发推进过程,在盾构刀盘到达掌子面前,容易出现盾构机“磕头”现象。

对此本方案采取如下措施:

⑴在浇注导台时,出洞位置砼导台及导轨的高程高于设计标高30mm;

⑵在洞门内底部按导台的弧面浇注斜坡形素砼导台。

3、推进时管片出现左右摇摆、下沉现象

推进时由于管片在各个面上的受力不一样,在左右油缸的推力差较大而管环在上下、左右没有反力支撑时则出现管片左右摇摆、下沉现象。

这主要是在拼装管片时管片螺栓没有上紧、每一环在脱离盾尾后未采取措施所致。

为了避免出现这种情况,中风井过站段拟采取以下措施:

⑴当管片有一半脱出盾尾时,就及时在下方塞紧楔形方木;

⑵对脱出盾尾的管片螺栓进行二次紧固;

⑶在管片左右侧及顶部加木方或槽钢支撑,稳定管片,防止管片推进过程中摆动错位;

⑷在管片底与导台之间的空隙回填细砂,进一步稳定管片。

八、测量监控

1、地面沉降监测

⑴盾构机离进洞洞口前100-150米时,在左、右线地面隧道中线方向上一般每隔15米建立一个监测断面,在中间风井井口地面适当增加监测断面。

⑵测量频率:

盾构机前100米初值每天测量1次,盾构机头里程前后20米每日两次,盾构机出洞过程中加密监测,并及时反馈信息。

2、隧道主控导线、水准测量

贯通前100m及50m时,对隧道主控导线、水准进行2次复核测量,保证测量托架和盾构机姿态的精度。

3、测量托架和盾构机姿态人工测量

在出洞前,对测量托架仪器站和后视棱镜平面坐标和高程进行2次精密人工复核测量,对盾构机姿态进行3次人工精密测量。

4、洞门圈复核测量

对中间风井洞门圈中心三维坐标进行和内径进行精密复核测量,确定洞门中心水平、垂直偏移值,对盾构机出洞滑行导轨中心和高程精密测量。

5、盾构机出洞前姿态参数控制

根据洞门圈水平、垂直偏移量调整盾构机刀盘中心姿态,保证顺利贯通。

6、在隧道贯通后,进行隧道贯通测量,对盾构机姿态多次人工复核

7、在重新始发前,对始发导轨中心和高程进行精密定位

在中间风井段,盾构机与线路中心的定位关系如下图所示。

考虑到始发时盾构机机头容易下行的特点,始发定位时,盾构机的始发中心宜比隧道设计中心高出30mm。

图八盾构始发定位

九、机械人员投入

过风井之前,成立盾构过风井施工领导小组,由项目经理任组长,项目副经理、项目总工、副总工负责部门协调,在此期间的盾构机推进、管片拼装施工作业每天分两班进行,拟投入本工程每个作业班组劳动力组织和施工机具设备如下所示

劳动力投入表

序号

工种名称

人数(人)

1

电焊工

5

2

班长

1

3

测量班

2

4

电工

3

5

管理人员

20

6

充电工

2

7

管片安装

6

8

始发井地面司索工

4

9

井口协调

6

10

杂工

6

11

累计各班人数

55

主要施工设备表

序号

设备名称

单位

数量

规格型号

主要工作性能指标

1

电动空压机

2

2

潜水泵

6

QS25×30-4

4KW

3

汽车吊

1

50t

4

电焊机

4

BX300

24.5KVA

5

气割设备

2

6

全站仪

1

莱卡TC402

7

精密水准仪

1

苏光DSZ2

8

洞门低压照明

10

9

液压千斤顶

2

30t

十、安全文明施工措施

1、对参与本项工作的施工管理技术人员和工人进行专项安全交底,管理人员和工人对盾构机过中间风井需要注意的事项必须清楚明确;

2、测量人员等临时出入施工现场的作业人员应正确使用劳动防护用品,遵守现场的安全文明施工管理规定,预防物体打击和高处坠落事故;

3、盾构机穿透中间风井南端堵头墙时现场必须注意隔离足够的范围;

4、隧道内动火作业必须做到“八不四要一清理”;

5、高处作业时必须有人员监护,高处作业人员必须系好安全带,使用的梯子必须牢固并将上端头固定以防止滑动。

 

反力架检算书

1、机场北站~福永站区间,盾构始发需使用反力架作为盾构始发反力装置。

2、反力架整体结构图

3、反力架主要由横梁L1、L2、立柱H1、H2、八字梁、钢环板组成,为提高整体稳定性,将反力架分为1/4块进行高强10.9级螺栓连接,节点为焊接而成一整体。

模拟传力路径钢环板-横梁-立柱-支撑-预埋板。

4、根据机场北站盾构始发阶段土体性能指标,及各施工单位经验,拟定始发最大推力2000t。

5、受力检算:

(1)钢环板检算:

钢环板截面特性:

Ix41886*104mm4

Wx2792.4*103mm3

截面面积=300*30*2+290*30*2=35400mm2

模拟受力2000t/3.14*6=106t=1040KN/m

钢环强度满足要求

(2)杆件检算:

假设将应力平均分配至各结构杆件

即2000t/3.14*6=106t=1040KN/m

横梁L1,弯矩、剪力计算

已知横梁跨距5100,横梁受力范围2580

根据弯矩图已知M=1002.45

L1截面

A腹板=1000*30=30000mm2

A翼板=350*30=10500mm2

As=2*(30000+10500)=81000mm2

截面特性:

Ix701776*104mm4,Wx14035510mm3

Sx8406*103mm3

L1强度计算:

L2强度计算:

 

立柱检算:

立柱截面

A腹板=1000*30=30000mm2

A翼板=600*30=18000mm2

As=2*(30000+18000)=81000mm2

受力分析:

将L1、L2荷载传递至立柱H1、H2计算

立柱H2与H1受力情况相同,不再计算。

查钢结构设计规范可知:

=205Mpa;

=120Mpa。

故检算构件能满足正截面强度要求

(3)后支撑系统计算:

支撑系统如下

共计支撑6根直径600mm,t16mm钢管。

3根斜撑焊接于底板预埋钢板,3根支撑于侧墙。

支撑受力计算:

左侧3根2.15m支撑

右侧斜撑取最长7.26m45°斜撑计算

截面特性:

弹性模量E=206*105,最小惯性矩=110695.145cm4,截面积=257.736cm

2.15m直撑受力计算

7.26m斜撑受力计算

由于水平夹角为45度则其水平承载力F为1066/cos45°=1507KN

(4)计算结果

从验算结构可以得出应按轴向抗压强度验算支撑承受最大推力

12159*3+1507*3=40998KN

始发最大推力我们设置为20000KN,后支撑满足最大推力要求。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1