港珠澳大桥.docx

上传人:b****6 文档编号:4687726 上传时间:2022-12-07 格式:DOCX 页数:5 大小:19KB
下载 相关 举报
港珠澳大桥.docx_第1页
第1页 / 共5页
港珠澳大桥.docx_第2页
第2页 / 共5页
港珠澳大桥.docx_第3页
第3页 / 共5页
港珠澳大桥.docx_第4页
第4页 / 共5页
港珠澳大桥.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

港珠澳大桥.docx

《港珠澳大桥.docx》由会员分享,可在线阅读,更多相关《港珠澳大桥.docx(5页珍藏版)》请在冰豆网上搜索。

港珠澳大桥.docx

港珠澳大桥

港珠澳大桥

  是跨越伶仃洋东接香港特别行政区西接广东珠海和澳门特别行政区,在一国两制框架下由粤港澳三地首次合作建设的超大型跨海交通,大桥于年月正式开工,总长约公里,其岛隧工程中的沉管隧道是当今世界综合难度最大的沉管隧道之一,建成后是世界上最长的跨海大桥。

  截至年月底,已累计完成投资约亿元,占项目总投资的%,预计通车时间:

年建成通车。

  据介绍,港珠澳大桥项目起自粤港分界线,止于珠海/澳门口岸人工岛,全长公里,其中桥梁公里隧道公里,以及处海中人工岛,按双向六车道高速公路标准建设,设计时速为每小时公里,总概算为亿元。

  该项目于年月开工建设。

  起于珠澳口岸人工岛,将接港珠澳大桥主体工程的港珠澳大桥珠海连接线工程,于年月底开工建设,截至年月底,已累计完成投资亿元,占项目总投资的%,预计年底建成通车。

  该项目经拱北口岸湾仔设隧道穿越将军山珠海保税区沿南琴路高架,终于南屏镇洪湾村拟设洪湾互通连接西部沿海高速公路月环至南屏支线延长线,项目全长公里其中主线长公里。

  全线按照双向六车道高速公路标准建设,设计时速为每小时公里,批复概算亿元。

  另悉,港珠澳大桥珠海口岸工程作为港珠澳大桥的重要组成部分,与澳门口岸同岛设置。

  建设内容包括旅检区货检区口岸办公区市政配套区,总建筑面积为万平方米,建筑顶棚面积为万平方米。

  总概算为亿元。

  项目自年月开工建设以来至今已累计完成投资亿元,占总概算的%,计划年建成。

  第二篇:

港珠澳大桥主体工程人工岛的降水方案设计字港珠澳大桥主体工程人工岛的降水方案设计摘要地下水是影响基坑施工的重要因素,基坑降水的设计是关系到工程安全与建筑施工是否能正常进行的重要技术措施。

  本文阐述了海上抽水试验抽水井及观测井的布置及施工方案,根椐水文地质条件选用计算模型,并采用多种方法对水文地质参数进行了计算与对比分析,最终确定基坑降水方案,以期对今后类似工程的设计施工具有一定的指导意义。

  关键词深基坑;降水;涌水量;方案设计;江苏淮安随着我国经济建设的迅猛发展,基坑深度也由~发展到首都国家大剧院王曙光,。

  在基坑开挖过程中地下水对工程支护设计与施工起着致关重要的作用,怎样降低地下水,降水方案设计能否达到基坑降水目的,关系到基础的安全与建筑施工的正常进行。

  查明建筑场地的水文地质条件,试验井的布置及施工方法,计算模型的选用,试验参数的计算,水文地质参数的分析,对评价地下水对隧道与人工岛基础施工的可能造成的影响是一项基础。

  港珠澳大桥主体工程人工岛位于香港大屿山石散石湾附近,其抽水井观测井的施工受风浪水流过往船只等多种因素的影响,技术难度大方法手段先进,取得的设计参数准确可靠。

  试验区概况本次试验位于珠江三角洲香港大屿山石散石湾附近海底平原区,主要含水屋为第四系松散层沉积物,下伏燕山早期花岗岩侵入体γ和震旦系片麻状混合花岗岩。

  人工岛处附近地下水可划分为松散岩类孔隙水和基岩裂隙水两类。

  松散岩类孔隙含水层是本次抽水目的层。

  试验井的布置及施工试验井布置抽水试验孔位于北侧岛壁外。

  观测井的方向近南北向,垂直于人工岛轴线方向,与地下水水流方向近一致。

  试验井为非完整井。

  成井过程抽水主井先用船上大型吊机将φ和φ的保护套管垂直下入土中,保证井管在孔中居中,由震动机压入土中,接着用φ三翼合金钻头扫孔,再用φ三翼合金钻头扩孔,孔深到设计深度后按地层分别下入沉淀管滤水管和实管。

  成井结构在施工时先对一口观测井采用φ岩芯管配用合金钻头,全断面取芯。

  通过对地层的分析,查明含水层的分布特征,确定过滤器和实管的长度及填砾方量及止水位置。

  抽水井外护管为φ无缝钢管,下至泥面。

  护管为φ纲管,井管为钢管,采用桥式过滤器。

  该过滤器的优点是:

①特殊结构使得砾石不易阻塞孔眼,有较高的过水能力;②特殊孔形结构起到了增强滤水管机械强度的效果,具有较高的机械强度;③连接方式多样化,下管操作方便,适于野外生产。

  观测井选用φ钢管作为隔水保护套管,φ钢管作为井管。

  抽水井和观测井结构大致相同。

  抽水井底部为左右的沉淀管,含水层部分采用桥式过滤器,其余采用实管;观测井含水层部分采用圆孔式过滤器,其他部分采用实管。

  水位观测静止水位观测。

  静止水位和海水位采用全自动水位控制仪进行观测,仪器的读取为每分钟一次。

  采用测绳进行校正。

  动水位流量及水温的观测。

  本次试验主要采用稳定流方法进行试验,同时结合非稳定流法计算要求进行观测。

  抽水井动水位的的观测在正式抽水试验开始后第各观测一次,以后每隔观测一次,直到水位稳定。

  抽水井出水量和观测井水位,在正式抽水试验开始后第各观测一次,以后每隔观测一次。

  在试验过程中测量地下水海水水温以及空气温度。

  出水量采用水表测量,水表读数精确到。

  用三角堰对流量进行校核,经校核所采取的数据是准确的。

  对试验井进行三个降深抽水试验。

  降深由大到小,先进行大降深,后进行小降深。

  抽水试验稳定标准和稳定延续时间:

本次试验地下水位和海水联系密切。

  通过观测,地下水的升降与潮水的涨落稍有滞后。

  因此采用相对静止水位,即当潮水位与地下水位变化趋势一致且差值保持在一常量时,即视为地下水位相对稳定。

  涌水量波动值最大与最小涌水量之差不超过平均流量的%。

  水位和水量只在上述范围内波动,没有持续上升或下降的趋势,视为稳定。

  稳定延续时间:

第一降深小时,第二降深小时,第三降深小时。

  恢复水位观测。

  抽水试验结束,立即进行了恢复水位观测。

  抽水井在抽水停止后第各测一次,以后每分钟测量一次,直到水位稳定。

  观测井观测时间为停抽后第各测一次,以后每隔分钟观测一次,直至完全恢复。

  恢复水位稳定标准与静止水位观测要求相同,并与抽水前静水水位进行比较。

  抽水试验情况抽水试验共进行三个降深,降深分别为和,出水量分别为和/,三次降深稳定时间分别为时。

  水文地质参数计算计算模型的选用计算模型。

  根据地质资料,试验所在位置目的含水层分布连续,试验含水层厚度,由细砂中砂粗砂组成。

  试验所在位置含水层分布较均匀,边界距抽水井较远。

  抽水井上部均覆盖有较厚的粘性土层,含水层具有承压性。

  试验所采用的是非完整井试验。

  地下水静止水位的采用。

  根据本次试验地下水静止水位及海水位的观测,地下水与海水受潮汐变化现象明显。

  地下水的变化与海水的变化有滞后现象,滞后时间约。

  地下水水位高程与海水面高程相差较大,约,在高潮和低潮期也不相同。

  地下水静止水位的采用是:

根据静止水位观测时,取得在潮汐周期内不同时间地下水与海水的差值,对抽水稳定时间内处于潮汐周期的不同时间进行平差,算出静止水位和水位降深。

  试验参数的计算渗透系数的计算。

  考虑到现场实际情况本文采用稳定流方法进行计算。

  据《水文地质手册》编写组之单孔抽水,抽水孔为非完整孔,远离补给或隔水边界,过滤器紧连隔水顶板计算渗透系数。

  式中:

—利用主井求得的含水层渗透系数/;—影响半径;—管井稳定涌水量/;—含水层厚度;—抽水井半径;—抽水井稳定动水位下降值;ξ—稳定流非完整井补充水流阻力值查表。

  根据《水文地质手册》编写组之有二个观测孔,抽水孔和观测孔为非完整孔,远离补给或隔水边界,过滤器紧连隔水顶板计算渗透系数。

  式中:

—利用主井和个观测井求得的含水层渗透系数/;—管井稳定涌水量/;—含水层厚度;—观测孔观测孔稳定动水位下降值;—观测孔观测孔至抽水井中心的距离。

  表根据附录稳定流承压水非完整井过滤器紧接含水层顶板,>,计算承压水渗透系数计算公式:

式中:

—利用主井和个观测井求得的含水层渗透系数/;—管井稳定涌水量/;—含水层厚度;—过滤器长度;—观测孔观测孔稳定动水位下降值;—观测孔观测孔至抽水井中心的距离。

  表抽水井影响半径计算公式。

  根据附录中公式:

式式中:

—影响半径;—观测孔内水位降深;—抽水孔至观测孔之间的距离。

  水文地质参数的分析与选用通过不同方法对渗透系的综上所得,人工岛渗透系数为~×/,降深~时,影响半径为~。

  由于采用两个观察孔时所计算结果精度较高,人工岛渗透系数=×/,降深在时影响半径=。

  根据人工岛区水文地质条件,结合场区勘察地层参数分析比较,取以上平均值为本次抽水试验水文地质参数。

  基坑降水方案建议根据人工岛及隧道的设计方案,主要有两个方面的施工涉及地下水:

一是隧道岛上段小岛施工时的降水;二是在围堰施工后,人工岛大面积排水后的基坑抗渗流稳定性。

  人工岛降水的有关参数分别计算如下。

  人工岛基坑降水参数计算基坑涌水量的计算。

  按设计方案要求,拟建人工岛承压水头降至,据资料显示,测得最高海水位,而承压水头比海水位高,即基坑水位降深为。

  根据之中承压水完整井基坑涌水量计算公式:

式中:

—基坑涌水量/;k—渗透系数×/;—承压水含水层厚度;—基坑水位降深;—降水影响半径设计降深时影响半径;—基坑等效半径。

  代入数值计算得:

=/。

  设计单井涌水量的计算。

  根据之管井的出水量经验公式:

其中:

—过滤器半径取;—过滤器进水部分长度取;—渗透系数×/。

  代入数据,计算得:

=/。

  降水井数量的计算。

  根据之降水井的计算公式:

式中:

—基坑总涌水量/;—设计单井出水量/。

  分别代入数值计算得:

≈。

  即拟建人工岛岛隧结合处小岛基坑降水需布置口井降水井井深井径。

  人工岛降水井的布设拟建人工岛岛隧结合处小岛基坑,长,宽。

  该场区含水层分布均匀,渗透性好,地下水补给条件好。

  建议降水井布置在岛壁外围~处,分三排均匀布置,两侧每排个,中间一排个,详见图:

人工岛降水井平面布置图。

  图人工岛降水井平面布置图根据之块状基坑降水深度计算公式:

式中:

—在基坑中心处或各井点中心处地下水位降深;—基坑总涌水量/;—含水层厚度;-渗透系数×/;—基坑等效半径与降水井影响半径之和+;—降水井个数口;—井至基坑中心点的距离。

  代入数值计算得:

=。

  可见,降水井运行后水位降深为,超过设计降深,可满足降水设计要求。

  基坑抗渗流稳定性分析根据设计要求,在人工岛基础进行施工时,人工岛基坑底部开挖高程为-。

  按-之进行基坑底抗渗流稳定性验算。

  式中:

γ—透水层以上土的饱和重度/;+δ—透水层顶面距基坑底面的深度;—含水层水压力。

  透水层以上土层为淤泥淤泥质粉质粘土,饱和重度取/。

  透水层顶面距基坑底面的深度最小为。

  含水层水压力取年最大潮位时地下水水头值到透水层顶面的距离。

  满足条件,坑底稳定。

  结束语通过多种方法计算出人工岛渗透系数=×/,降深在时影响半径=。

  按设计方案要求,拟建人工岛承压水头降至,据资料显示,测得最高海水位,而承压水头比海水位高,即基坑水位降深为。

  承压水完整井基坑涌水量计算=/。

  =/。

  拟建人工岛岛隧结合处小岛基坑降水需布置口井降水井井深井径。

  当布设口降水井时,可见,降水井运行后水位降深为,超过设计降深,可满足降水设计要求。

  参考文献[]供水水文地质勘察规范[][]水利水电工程钻孔抽水试验规程》[][]:

工程建设水文地质勘察标准[][]建筑地基基础设计规范[][]建筑基坑支护技术规程[][]《供水水文地质手册》编写组供水水文地质手册[]北京:

地质出版社,[]王曙光深基坑支护事故处理经验录[]北京:

机械工业出版社,[]《水文地质手册》编写组水文地质手册[]北京:

地质出版社,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1