一元二次方程的应用题及答案.docx

上传人:b****3 文档编号:4657850 上传时间:2022-12-07 格式:DOCX 页数:17 大小:115.01KB
下载 相关 举报
一元二次方程的应用题及答案.docx_第1页
第1页 / 共17页
一元二次方程的应用题及答案.docx_第2页
第2页 / 共17页
一元二次方程的应用题及答案.docx_第3页
第3页 / 共17页
一元二次方程的应用题及答案.docx_第4页
第4页 / 共17页
一元二次方程的应用题及答案.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

一元二次方程的应用题及答案.docx

《一元二次方程的应用题及答案.docx》由会员分享,可在线阅读,更多相关《一元二次方程的应用题及答案.docx(17页珍藏版)》请在冰豆网上搜索。

一元二次方程的应用题及答案.docx

一元二次方程的应用题及答案

一元二次方程的应用题及答案

一、选择题

1.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;假设每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利到达15元,每盆应多植多少株?

设每盆多植x株,那么可以列出的方程是〔〕

A.〔3+x〕〔4﹣0.5x〕=15

B.〔x+3〕〔4+0.5x〕=15

C.〔x+4〕〔3﹣0.5x〕=15

D.〔x+1〕〔4﹣0.5x〕=15

2.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,

根据题意,下面列出的方程正确的选项是〔〕

A.100〔1+

〕2=121B.100〔1-

〕2=121C.100〔1+

〕=121D.100〔1-

〕=121

3.某商品连续两次降价,每次都降20﹪后的价格为

元,那么原价是〔〕

A.

元B.1.2

元C.

元D.0.82

4.三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,那么这个三角形的周长是〔〕

A.9B.11C.13D.11或13

5.等腰三角形一条边的长为3,它的另两条边的边长是关于

的一元二次方程

的两个根,那么k的值是〔〕

A.27B.36C.27或36D.18

6.某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P〔件〕与每件的销售价x〔元〕满足关系:

P=100﹣2x.假设商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的选项是〔〕

A.〔x﹣30〕〔100﹣2x〕=200B.x〔100﹣2x〕=200

C.〔30﹣x〕〔100﹣2x〕=200D.〔x﹣30〕〔2x﹣100〕=200

7.某超市一月份的营业额为200万元,第一季度的总营业额共1000万元,如果平均每月增长率为x,那么由题意列方程应为〔〕

A.

B.

C.

D.

 

二、填空题

8.某小区2010年屋顶绿化面积为2000平方米,方案2012年屋顶绿化面积要到达2880平方米.如果每年屋顶绿化面积的增长率一样,那么这个增长率是.

9.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,设平均每次降价的百分率是x,那么可列出方程.

10.要组织一次篮球联赛,赛制为单循环形式〔每两队之间都赛一场〕,方案安排28场比赛,假设设参赛球队的个数是x,那么列出方程为.

11.某药品原价每盒25元,经过两次连续降价后,售价每盒16元.那么该药品平均每次降价的百分数是__.

12.某药品经过连续两次降价后,由每盒200元下调至128元,假设平均每次下降百分率为x,那么所列方程为.

13.市政府为了解决市民看病

难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,那么这种药品平均每次降价的百分率为.

14.如图,某小区规划在一个长为40m、宽为26m的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余局部种草.假设使每一块草坪的面积为144m2,求小路的宽度.假设设小路的宽度为xm,那么x满足的方程为.

15.现定义运算“※〞,对于任意实数a、b,都有a※b=a2-3a+b,如:

3※5=32-3×3+5,假设x※2=6,那么实数x的值是___________.

16.学校组织一次乒乓球赛,要求每两队之间都要赛一场.假设共赛了15场,那么有几个球队参赛?

设有

个球队参赛,列出正确的方程___________________.

三、解答题

17.在美化校园的活动中,某兴趣小组想借助如下图的直角墙角〔两边足够长〕,用28m长的篱笆围成一个矩形花园ABCD〔篱笆只围AB,BC两边〕,设AB=xm.

〔1〕假设花园的面积为192m2,求x的值;

〔2〕假设在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园〔含边界,不考虑树的粗细〕,求花园面积S的最大值.

 

18.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?

假设病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?

19.〔本小题总分值8分〕新华商场销售某种空调,每台进货价为2500元.市场调研说明:

当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种空调的销售利润平均每天到达5000元,每台空调的定价应为多少元?

20.如下图,在长30m,宽20m的花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.要使种植花草的面积为532m2,那么小道进出口的宽度应为多少m?

〔注:

所有小道进出口的宽度相等,且每段小道均为平行四边形〕

21.如图,在长为32m,宽为20m的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作实验田,要使试验田面积为570m2,道路的宽应为多少?

22.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2014年经营总收入要到达2160万元,且方案从2012年到2014年,每年经营总收入的年增长率一样,问每年的增长率是多少。

23.〔此题总分值8分〕小明锻炼健身,从A地匀速步行到B地用时25分钟.假设返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.

〔1〕求返回时A、B两地间的路程;

〔2〕假设小明从A地步行到B地后,以跑步形式继续前进到C地〔整个锻炼过程不休息〕.据测试,在他整个锻炼过程的前30分钟〔含第30分钟〕,步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:

小明从A地到C地共锻炼多少分钟?

 

24.〔此题总分值8分〕如图,要建一个总面积为45m2的长方形养鸡场〔分为一样的两片区域〕,养鸡场的一边靠着一面长为14m的墙,另几条边用总长为22m的竹篱笆围成,每片养鸡场的前面各开一个宽1m的门.求这个养鸡场的长AD与宽AB.

25.浠水县某中学规划在校园一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余局部种草,〔如下图〕,假设使每一块草坪的面积都为96平方米,那么人行道的宽为多少米?

26.〔12分〕某商场将进货单价为18元的商品,按每件20元售出时,每天可销售100件,如果每件提高1元,日销售量就要减少10件,假设使商场投资少,收益大,那么该商品的售出价格定为多少元时,才能使每天获得350元?

27.〔10分〕如图,△ABC中,∠C=90°,BC=6cm,AC=8cm,点P从点A开场沿AC向点C以2厘米/秒的速度运动;与此同时,点Q从点C开场沿CB边向点B以1厘米/秒的速度运动;如果P、Q分别从A、C同时出发,当其中一点到达终点时,另一点也随之停顿运动.

〔1〕经过几秒,△CPQ的面积等于3cm2?

〔2〕在整个运动过程中,是否存在某一时刻t,使PQ恰好平分△ABC的面积?

假设存在,求出运动时间t;假设不存在,请说明理由.

28.〔此题总分值8分〕某市为打造“绿色城市〞,积极投入资金进展河道治污与园林绿化两项工程,2013年投资1000万元,预计2015年投资1210万元.假设这两年平均每年投资增长的百分率一样.

〔1〕求平均每年投资增长的百分率;

〔2〕按此增长率,计算2016年投资额能否到达1360万?

 

29.〔10分〕在某市组织的大型商业演出活动中,对团体购置门票实行优惠,决定在原定票价根底上每降价80元,这样按原定票价需花费6000元购置的门票数,现在只花费了4800元.

〔1〕求每门票的原定票价;

〔2〕由实际情况,活动组织单

位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.

30.在一块长16m、宽12m的矩形荒地上,小明要建造一个花园,并使花园所占的面积为荒地面积的一半,其中花园四周小路的宽度都相等,求小路的宽。

 

参考答案

1.A

【解析】

试题分析:

根据题意可得:

每盆的株数为〔3+x〕珠,每珠的利润为〔4-0.5x〕元,根据题意得出方程.

考点:

一元二次方程的应用

2.A

【解析】

试题分析:

在商品问题中,现价=原价×

,根据这个公式可以进展求解.

考点:

一元二次方程的应用.

3.A

【解析】

试题分析:

把原价看作单位“1〞,每降价一次,价格就是原价的〔1-20%〕.因此原价为:

=

元;

故应选A.

考点:

一元二次方程的应用——降价问题

4.C

【解析】

试题分析:

根据题意知:

x2-6x+8=0,利用因式分解法可得〔x-2〕〔x-4〕=0,因此x-2=0,x-4=0,解得x1=2,x2=4,所以:

当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,

当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,

应选C

考点:

因式分解法解一元二次方程,三角形的三边关系

5.B.

【解析】

试题分析:

分两种情况:

①当其他两条边中有一个为3时,将x=3代入原方程,得9﹣12×3+k=0,解得k=27.将k=27代入原方程,得

,解得x=3或9.∵3,3,9不能够组成三角形,不符合题意舍去;

②当3为底时,那么其他两条边相等,即△=0,此时144﹣4k=0,解得k=36.

将k=36代入原方程,得

,解得x=6.∵3,6,6能够组成三角形,符合题意.故k的值为36.

应选B.

考点:

1.等腰三角形的性质;2.一元二次方程的解;3.分类讨论.

6.A

【解析】

试题分析:

根据:

一件的利润×每天销售量=每天销售这种商品获得的利润200元,列方程可得:

〔x﹣30〕〔100﹣2x〕=200,应选:

A.

考点:

一元二次方程的应用.

7.D.

【解析】

试题分析:

∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×〔1+x〕,∴三月份的营业额为200×〔1+x〕×〔1+x〕=

,∴可列方程为

,即

.应选D.

考点:

1.由实际问题抽象出一元二次方程;2.增长率问题.

8.20%

【解析】

试题分析:

对于增长率的一般通用公式为:

增长前的数量×

=增长后的数量.根据题意可得:

,然后解出方程得出答案.

考点:

一元二次方程的应用

9.

【解析】

试题分析:

对于降价率的根本公式可得:

降价前的数量×

=降价后的数量.

考点:

一元二次方程的应用

10.

=28

【解析】

试题分析:

设邀请x个球队参加比赛,那么第一个球队和其他球队打〔x-1〕场球,第二个球队和其他球队打〔x-2〕场,以此类推可以知道共打〔1+2+3+…+x-1〕场球,然后根据方案安排15场比赛即可列出方程

=28.

考点:

一元二次方程

11.20%.

【解析】

试题分析:

设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格〔1-降价的百分率〕,那么第一次降价后的价格是25〔1-x〕,第二次后的价格是25〔1-x〕2,据此即可列方程求解.

解:

设该药品平均每次降价的百分率为x,

由题意可知经过连续两次降价,现在售价每盒16元,

故25〔1-x〕2=16,

解得x=0.2或1.8〔不合题意,舍去〕,

故该药品平均每次降价的百分率为20%.

故答案为:

20%.

考点:

一元二次方程的应用.

12.200〔1-x〕2=128

【解析】

试题分析:

根据降价率的通用公式为:

降价前的数量×

=降价后的数量.

考点:

一元二次方程的应用

13.20%.

【解析】

试题分析:

设这种药品平均每次降价的百分率为x,那么第一次下调后的价格为200〔1﹣x〕,第二次下调的价格为

,由题意列得:

,解得:

x=0.2=20%,或x=1.8=180%〔舍去〕,那么这种药品平均每次降价的百分率为20%.故答案为:

20%.

考点:

1.一元二次方程的应用;2.增长率问题.

14.

【解析】

试题分析:

草坪可整理为一个矩形,长为40﹣2x,宽为26﹣x,即列的方程为〔40﹣2x〕〔26﹣x〕=864,故答案为:

〔40﹣2x〕〔26﹣x〕=864.

考点:

1.由实际问题抽象出一元二次方程;2.几何图形问题.

15.4或-1

【解析】

试题分析:

因为定义运算“※〞,对于任意实数a、b,都有a※b=a2-3a+b,且x※2=6,所以x2-3x+2=6,所以x2-3x-4=0,所以〔x-4〕〔x+1〕=0,所以x-4=0,或x+1=0,所以x=4或x=-1.

考点:

新定义、一元二次方程.

16.

【解析】

试题分析:

设有x个球队参加比赛,依题意得1+2+3+…+x﹣1=15,即

.故答案为:

考点:

由实际问题抽象出一元二次方程.

17.〔1〕x=12m或16m;〔2〕195平方米.

【解析】

试题分析:

首先设AB=x,那么BC=〔28-x〕m,根据题意得出关于x的方程,从而求出x的值;根据题意列出S与x的函数关系式,然后再根据题意得出x的取值围,根据函数的增减性求出S的最大值.

试题解析:

〔1〕∵AB=xm,那么BC=〔28﹣x〕m,∴x〔28﹣x〕=192,解得:

x1=12,x2=16,

答:

x的值为12m或16m;

〔2〕∵AB=xm,∴BC=28﹣x,∴S=x〔28﹣x〕=﹣x2+28x=﹣〔x﹣14〕2+196,

∵在P处有一棵树与墙CD,AD的距离分别是15m和6m,∵28﹣15=13,∴6≤x≤13,

∴当x=13时,S取到最大值为:

S=﹣〔13﹣14〕2+196=195,

答:

花园面积S的最大值为195平方米.

考点:

一元二次方程,二次函数的应用.

18.8台;会超过700台.

【解析】

试题分析:

首先设每轮感染中平均每一台电脑会感染x台电脑,根据题意列出方程进展求解;根据题意求出3轮后感染的台数,然后与700进展比拟大小.

试题解析:

设每轮感染中平均每一台电脑会感染x台电脑,依题意得:

1+x+〔1+x〕x=81,

整理得〔1+x〕2=81,那么x+1=9或x+1=﹣9,解得x1=8,x2=﹣10〔舍去〕,

∴〔1+x〕2+x〔1+x〕2=〔1+x〕3=〔1+8〕3=729>700.

答:

每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.

考点:

一元二次方程的应用

19.2750元.

【解析】

试题分析:

此题我们首先设降价x元,然后根据总利润=单价利润×数量列出方程进展求解.

试题解析:

设每台空调降价x元,根据题意,得〔2900-x-2500〕〔8+4×

〕=5000

解得:

=150∴定价为:

2900-150=2750

答:

每台空调应定价为2750元.

考点:

一元二次方程的应用.

20.1米

【解析】

试题分析:

首先设小道进出口的宽度为x米,根据题意得出方程,从而求出x的值.

试题解析:

设小道进出口的宽度为x米根据题意得:

〔30-2x〕〔20-x〕=532

解得:

x=1x=34〔舍〕

答:

小道进出口的宽度为1米

考点:

一元二次方程的应用

21.1m

【解析】

试题分析:

相等关系:

试验地的面积=试验地的长×宽.如果设道路宽x,可根据此关系列出方程求出x的值,然后将不合题意的舍去即可.

试题解析:

解:

设道路为x米宽,

由题意得:

〔32﹣2x〕=570,

整理得:

x2﹣36x+35=0,

解得:

x=1,x=35,

经检验是原方程的解,但是x=35>20,因此不合题意舍去.

答:

道路为1m宽.

考点:

一元二次方程的应用

22.20%

【解析】

试题分析:

首先根据题意得出2012年的全年经营总收入,然后再根据增长前的数量×

=增长后的数量列出方程进展求解.

试题解析:

600÷40%=1500〔万元〕

设平均每年的增长率为x,根据题意列方程1500

=2160

解得:

=-2.2,

=0.2

答:

每年的增长率为20%.

考点:

一元二次方程的应用.

23.

【解析】

试题分析:

〔1〕可设AB两地之间的距离为x米,根据两种步行方案的速度相等,列出方程即可求解;

〔2〕可设从A地到C地一共锻炼时间为y分钟,根据在整个锻炼过程中小明共消耗900卡路里热量,列出方程即可求解.

试题解析:

解:

〔1〕设返回时A,B两地间的路程为x米,由题意得:

解得x=1800.

答:

A、B两地间的路程为1800米;

〔2〕设小明从A地到B地共锻炼了y分钟,由题意得:

25×6+5×10+[10+〔y﹣30〕×1]〔y﹣30〕=904,

整理得y2﹣50y﹣104=0,

解得y1=52,y2=﹣2〔舍去〕.

答:

小明从A地到C地共锻炼52分钟.

考点:

一元一次方程,一元二次方程

24.9m,5m.

【解析】

试题分析:

根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.注意方程的解要符合题意.设鸡场的长为xm,宽为ym,根据鸡场的面积和周长列出两个等量关系,解方程组即可,注意鸡场的长小于围墙的长.

试题解析:

解:

设鸡场的长为xm,宽为ym,由题意可得:

,且x<14,解得y=3或5;

当y=3,x=15;

∵x<14,

∴不合题意,舍去;

当y=5时,x=9,经检验符合题意.

答:

这个养鸡场的长为9m,宽为5m.

考点:

二元一次方程组的应用.

25.2米

【解析】

试题分析:

首先设人行道的宽为x米,根据题意列出关于x的方程,从而得出答案.

试题解析:

设人行道的宽为x米,根据题意得:

〔36-2x〕〔20-x〕=96×6;解得:

x1=2x2=36〔舍去〕

答:

人行道路的宽为2米。

考点:

一元二次方程的应用

26.25元.

【解析】

试题分析:

设售价定为每件x元,由:

利润=每件利润×销售量,列方程求解.

试题解析:

解:

设售价定为每件x元,那么每件利润为〔x﹣8〕元,销售量为[100﹣〔x﹣10〕×10],依题意,得〔x﹣8〕[100﹣〔x﹣10〕×10]=360,整理,得

,解得

=14.

答:

他将售出价定为每件14元时,才能使每天所赚利润为360元.

考点:

一元二次方程的应用.

27.〔1〕x1=1,x2=3.〔2〕不存在

【解析】

试题分析:

〔1〕设经过x秒,用x表示出CP,CQ的长,根据△CPQ的面积等于3cm2列一元二次方程,然后解方程即可;〔2〕设存在某一时刻t,使PQ恰好平分△ABC的面积,根据题意可列方程

t〔8-2t〕=

×

×6×8,解方程后可判断.

试题解析:

〔1〕解:

设经过x秒,△CPQ的面积等于3cm2.那么

x〔8-2x〕=3,

化简得x2-4x+3=0,

解得x1=1,x2=3.

〔2〕解:

设存在某一时刻t,使PQ恰好平分△ABC的面积.那么

t〔8-2t〕=

×

×6×8,

化简得t2-4t+12=0,

b2-4ac=16-48=-32<0,方程无实数根,即不存在满足条件的t.

考点:

一元二次方程的应用.

28.〔1〕10%;〔2〕不能

【解析】

试题分析:

〔1〕设年平均增长率为x,根据2015年投资1210万元列一元二次方程,解方程即可;〔2〕把〔1〕中的x的值代入1210〔1+x〕求值,然后与1331比拟大小即可.

试题解析:

解〔1〕设年平均增长率为x,那么:

〔舍去〕

答略

〔2〕1210〔1+0.1〕=1331<1360

答不能

考点:

一元二次方程的应用.

29.〔1〕400;〔2〕10%.

【解析】

试题分析:

〔1〕设每门票的原定票价为x元,那么现在每门票的票价为〔x﹣80〕元,由“按原定票价需花费6000元购置的门票数,现在只花费了4800元〞建立方程,解方程即可;

〔2〕设平均每次降价的百分率为y,由“原定票价经过连续二次降价后降为324元〞建立方程,解方程即可.

试题解析:

解:

〔1〕设每门票的原定票价为x元,那么现在每门票的票价为〔x﹣80〕元,由题意得:

,解得x=400.经检验,x=400是原方程的根.

答:

每门票的原定票价为400元;

〔2〕设平均每次降价的百分率为y,由题意得:

,解得:

〔不合题意,舍去〕.

答:

平均每次降价10%.

考点:

1.一元二次方程的应用;2.分式方程的应用.

30.2m

【解析】

试题分析:

首先设小路宽为xm,根据题意列出关于x的一元二次方程,从而得出x的值.

试题解析:

设小路宽为xm,由于花园四周小路的宽度相等

那么根据题意,可得〔16-2x〕〔12-2x〕=

×16×12

即x2-14x+24=0,

解之得x=2或x=12

由于矩形荒地的宽是12m,故舍去x=12

答:

花园四周小路宽为2m。

考点:

一元二次方程的应用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 城乡园林规划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1