通原第一次实验.docx

上传人:b****6 文档编号:4540572 上传时间:2022-12-01 格式:DOCX 页数:18 大小:902.94KB
下载 相关 举报
通原第一次实验.docx_第1页
第1页 / 共18页
通原第一次实验.docx_第2页
第2页 / 共18页
通原第一次实验.docx_第3页
第3页 / 共18页
通原第一次实验.docx_第4页
第4页 / 共18页
通原第一次实验.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

通原第一次实验.docx

《通原第一次实验.docx》由会员分享,可在线阅读,更多相关《通原第一次实验.docx(18页珍藏版)》请在冰豆网上搜索。

通原第一次实验.docx

通原第一次实验

实验5FSK(ASK)调制解调实验

一、实验目的

1.掌握FSK(ASK)调制器的工作原理及性能测试;

2.掌握FSK(ASK)锁相解调器工作原理及性能测试;

3.学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。

二、实验仪器

1.FSK调制模块,位号A(实物图片如下)

2.FSK解调模块,位号C(实物图片如下)

3.时钟与基带数据发生模块,位号:

G(实物图片见第3页)

4.噪声模块,位号B

5.20M双踪示波器1台

6.小平口螺丝刀1只

7.频率计1台(选用)

8.信号连接线3根

 

 

 

三、实验原理

数字频率调制是数据通信中使用较早的一种通信方式。

由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。

(一)FSK调制电路工作原理

FSK调制电路是由两个ASK调制电路组合而成,它的电原理图,如图5-1所示。

16K02为两ASK已调信号叠加控制跳线。

用短路块仅将1-2脚相连,输出“1”码对应的ASK已调信号;用短路块仅将3-4脚相连,输出“0”码对应的ASK已调信号。

用短路块将1-2脚及3-4脚都相连,则输出FSK已调信号。

因此,本实验箱没有专门设置ASK实验单元电路。

 

 

 

图5-1FSK调制解调电原理框图

图5-1中,输入的数字基带信号分成两路,一路控制f1=32KHz的载频,另一路经反相器去控制f2=16KHz的载频。

当基带信号为“1”时,模拟开关B打开,模拟开关A关闭,此时输出f1=32KHz;当基带信号为“0”时,模拟开关B关闭,模拟开关A打开,此时输出f2=16KHz;在输出端经开关16K02叠加,即可得到已调的FSK信号。

电路中的两路载频(f1、f2)由时钟与基带数据发生模块产生的方波,经射随、选频滤波变为正弦波,再送至模拟开关4066。

载频f1的幅度调节电位器16W01,载频f2的幅度调节电位器16W02。

(二)FSK解调电路工作原理

FSK解调采用锁相解调,锁相解调的工作原理是十分简单的,只要在设计锁相环时,使它锁定在FSK的一个载频上,此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。

FSK锁相环解调器原理图如图5-2所示。

FSK锁相解调器采用集成锁相环芯片

 

17P01

17P02

 

图5-2FSK锁相环解调器原理示意图

MC4046。

其中,压控振荡器的频率是由17C02、17R09、17W01等元件参数确定,中心频率设计在32KHz左右,并可通过17W01电位器进行微调。

当输入信号为32KHz时,调节17W01电位器,使环路锁定,经形成电路后,输出高电平;当输入信号为16KHz时,环路失锁,经形成电路后,输出低电平,则在解调器输出端就得到解调的基带信号序列。

四、各测量点和可调元件的作用

1.FSK调制模块

16K02:

两ASK已调信号叠加控制跳线。

用短路块将1-2脚及3-4脚都相连,则输出FSK已调信号。

仅1-2脚连通,则输出ASK已调信号。

16TP01:

32KHz方波信号输入测试点,由4U01芯片(EPM240)编程产生。

16TP02:

16KHz方波信号输入测试点,由4U01芯片(EPM240)编程产生。

16TP03:

32KHz载波信号测试点,可调节电位器16W01改变幅度。

16TP04:

16KHz载波信号测试点,可调节电位器16W02改变幅度。

16P01:

数字基带信码信号输入铆孔。

16P02:

FSK已调信号输出铆孔,此测量点需与16P01点波形对比测量。

2.FSK解调模块

17W01:

解调模块压控振荡器的中心频率调整电位器。

17P01:

FSK解调信号输入铆孔。

17TP02:

FSK解调电路中压控振荡器输出时钟的中心频率,正常工作时应为32KHz左右,频偏不应大于2KHz,若有偏差,可调节电位器17W01。

17P02:

FSK解调信号输出,即数字基带信码信号输出,波形同16P01。

3.噪声模块

3W01:

噪声电平调节。

3W02:

加噪后信号幅度调节。

3TP01:

噪声信号测试点,电平由3W01调节。

3P01:

外加信号输入铆孔。

3P02:

加噪后信号输出铆孔。

五、实验内容及步骤

1.插入有关实验模块:

在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“FSK调制模块”、“噪声模块”、“FSK解调模块”,插到底板“G、A、B、C”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。

注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。

2.信号线连接:

用专用导线将4P01、16P01;16P02、3P01;3P02、17P01连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。

3.加电:

打开系统电源开关,底板的电源指示灯正常显示。

若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

4.设置好跳线及开关:

用短路块将16K02的1-2、3-4相连。

拨码器4SW02:

设置为“00000”,4P01产生2K的15位m序列输出。

5.载波幅度调节:

16W01:

调节32KHz载波幅度大小,调节峰峰值4V。

16W02:

调节16KHz载波幅度大小,调节峰峰值4V。

用示波器对比测量16TP03、16TP04两波形。

6.FSK调制信号和巳调信号波形观察:

双踪示波器触发测量探头接16P01,另一测量探头接16P02,调节示波器使两波形同步,观察FSK调制信号和巳调信号波形,记录实验数据。

7.噪声模块调节:

调节3W01,将3TP01噪声电平调为0;调节3W02,调整3P02信号幅度为4V。

8.FSK解调参数调节:

调节17W01电位器,使压控振荡器即17TP02测量点为32KHz左右。

9.无噪声FSK解调输出波形观察:

调节3W01,将3TP01噪声电平调为0;双踪示波器触发测量探头接16P01,另一测量探头接17P02。

同时观察FSK调制和解调输出信号波形,并作记录,并比较两者波形,正常情况,两者波形一致。

如果不一致,可微调17W01电位器,使之达到一致。

10.加噪声FSK解调输出波形观察:

调节3W01逐步增加调制信号的噪声电平大小,看是否还能正确解调出基带信号。

11.ASK实验与上相似,这儿不再赘述。

12.关机拆线:

实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。

注:

由于本实验中载波频率为16KHz、32KHz,所以被调制基带信号的码元速率不要超过4KHz。

六、实验报告要求

1.根据实验步骤2的连线关系,画出实验结构示意图。

2.画出FSK、ASK各主要测试点波形。

3.分析其输出数字基带信号序列与发送数字基带信号序列相比有否产生延迟,这种解调方式在什么情况下会出现解调输出的数字基带信号序列反向的问题?

实验6PSKQPSK调制解调实验

一、实验目的

1.掌握PSKQPS调制解调的工作原理及性能要求;

2.进行PSKQPS调制、解调实验,掌握电路调整测试方法;

3.掌握二相绝对码与相对码的码变换方法。

二、实验仪器

1.PSKQPSK调制模块,位号A(实物图片如下)

2.PSKQPSK解调模块,位号C(实物图片如下)

3.时钟与基带数据发生模块,位号:

G(实物图片见第3页)

4.噪声模块,位号B

5.复接/解复接、同步技术模块,位号I(实物图片见第144页)

6.20M双踪示波器1台

7.小平口螺丝刀1只

8.频率计1台(选用)

9.信号连接线4根

 

 

三、实验原理

PSKQPSK调制/解调模块,除能完成上述PSK(DPSK)调制/解调全部实验外还能进行QPSK、ASK调制/解调等实验。

不同调制方式的转換是通过开关4SW02及插塞37K01、37K02、38K01、38K02位置设置实现。

不同调制相应开关设置如下表。

调制方式

4SW02

37K01、37K02

38K01、38K02

PSK(DPSK)

00001

①和②位挿入挿塞

1,2相连(挿左边)

QPSK

01101

③和④位挿入挿塞

3,2相连(挿右边)

ASK

00001

①和③位挿入挿塞

1,2相连(挿左边)

(一)PSK(DPSK)调制/解调实验

进行PSK(DPSK)调制时,工作状态预置开关4SW02置于00001,37K01、37K02①和②位挿入挿塞,38K01、38K02均处于1,2位相连(挿塞挿左边)。

相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。

在相同的信噪比条件下,可获得比其他调制方式(例如:

ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。

本实验箱采用相位选择法实现二进制相位调制,绝对移相键控(CPSK或简称PSK)是用输入的基带信号(绝对码)直接控制选择开关通断,从而选择不同相位的载波来实现。

相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。

1.PSK调制电路工作原理

二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s伪随机码、及其相对码、32KHz方波、外加数字信号等。

相位键控调制电原理框图,如图6-1所示。

 

图6-1相位键控调制电原理框图

1)滤波器、同相放大器和反相放大器

从图6-1看出,1024KHZ的方波经37R29加到由运放37UO4A及周边元件组成的低通滤波器,其输出变为l024KHZ正弦波,它通过37U05A同相放大和37U05B反相放大,从而得到l024KHZ的同相和反相正弦载波,电位器37W01可调节反相放大器的增益,从而使同相载波与反相载波的幅度相等,然后同相和反相正弦载波被送到模拟开关乘法器。

2)模拟开关相乘器

对载波的相移键控是用模拟开关电路实现的。

同相载波与反相载波分别加到模拟开关A:

CD4066的输入端(1脚)、模拟开关B:

CD4066的输入端(11脚),数字基带信号一路直接加到模拟开关A的输入控制端(13脚),并且另一路经反相后加到模拟开关B的输入控制端(12脚),用来控制两个同频反相载波的通断。

当信码为“1”码时,模拟开关A的输入控制端为高电平,模拟开关A导通,输出同相载波,而模拟开关B的输入控制端为低电平,模拟开关B截止。

反之,当信码为“0”码时,模拟开关A的输入控制端为低电平,模拟开关A截止。

而模拟开关B的输入控制端却为高电平,模拟开关B导通。

输出反相载波,两个模拟开关输出信号通过输出开关37K01合路叠加后得到二相PSK调制信号。

DPSK调制是采用码型变换加绝对调相来实现,即把数据信息源(伪随机码序列)作为绝对码序列an,通过码型变换器变成相对码序列bn,然后再用相对码序列bn,进行绝对移相键控,这样就获得DPSK已调信号。

本模块对应的操作是这样的(详细见图6-1),37P01为PSK调制模块的基带信号输入铆孔,可以送入4P01点的绝对码信号(PSK),也可以送入相对码基带信号(相对4P01点的数字信号来说,此调制即为DPSK调制)。

2.相位键控解调电路工作原理

二相PSK(DPSK)解调器电路采用科斯塔斯环(Constas环)解调,其原理如图6-2所示。

图6-2解调器原理方框图

1)解调信号输入电路

输入电路由晶体三极管跟随器和运算放大器38U01组成的整形放大器构成,采用跟随器是为了发送(调制器)和接收(解调器)电路之间的隔离,从而使它们工作互不影响。

放大整形电路输出的信号将送到科斯塔斯特环。

由于跟随器电源电压为5V,因此输入的PSK已调波信号幅度不能太大,一般控制在1.8V左右,否则会产生波形失真。

2)科斯塔斯环提取载波原理

PSK采用科斯塔斯特环解调,科斯塔斯特环方框原理如图6-3所示。

图6-3科斯塔斯特环电路方框原理如图

科斯塔斯特环解调电路的一般工作原理在《现代通信原理》第三版(电子工业出版社2009年)等教科书中有详细分析,这儿不多讲述。

下面我们把实验平台具体电路与科斯塔斯特环方框原理图作一对比,讲述实验平台PSK解调电路的工作原理。

解调输入电路的输出信号被加到模拟门38U02C和38U02D构成的乘法器,前者为正交载波乘法器,相当于图6-3中的乘法器2,后者为同相载波乘法器,相当于框图中乘法器1。

38U03A,38U03D及周边电路为低通滤波器。

38U04,38U05为判决器,它的作用是将低通滤波后的信号整形,变成方波信号。

PSK解调信号从38U05的7脚经38U07A.D两非门后输出。

异或门38U06A起模2加的作用,38U07E为非门,若38U06A3两输入信号分别为A和B,因

(A、B同为0除外,因A与B正交,不会同时为0)因此异或门与非门合在一起,起乘法器作用,它相当于图6-3框图中的乘法器3。

38U710为压控振荡器(VCO),74LS124为双VCO,本电路仅使用了其中一个VCO,环路滤波器是由38R20、38R21、38C17组成的比例低通滤波器,VCO控制电压经环路低通滤波器加到芯片的2脚,38CA01为外接电容,它确定VCO自然谐振频率。

38W01用于频率微调,38D01,38E03用来稳压,以便提高VCO的频率稳定度。

VCO信号从7脚经38C19输出至移相90º电路。

科斯塔斯特环中的90º移相电路若用模拟电路实现。

则很难准确移相90º,并且相移随频率改变而变化。

图6-2电路中采用数字电路实现。

非门38U07F,D触发器38U08A.B及周围电路组成数字90º移相器。

由于D触发器有二分频作用。

所以VCO的锁定频率应为2fc,即VCO输出2048KHZ方波,其中一路直接加到38U08AD触发器,另一路经38U07F反相再加到38U08BD触发器,两触发器均为时钟脉冲正沿触发,由于38U08A的

与两D触发器的D端连接。

而D触发器Q端输出总是为触发时钟到来前D端状态,根据触发器工作原理和电路连接关系,数字90º移相电路的相位波形图如6-4所示。

图6-490度数字移相器的波形图

从图看出,38U08B的

端输出波形超前38U08A的

端90度,并且频率为1024KHZ,因此38U08B的

端输出为同相载波,38U08A的

端输出为正交载波。

由于科斯塔斯特环存在相位模糊,解调器可能会出现反向工作。

在PSK解调时38K01、38K02置于的l、2位(挿在左边),分别把科斯塔斯特环提取的正交载波及同相载波接到两正交解调器;从而实现科斯塔斯特环的闭环控制。

当38K01、38K02置于的2、3位(挿在右边),将用于四相解调,将在下节讲述。

若38K01、38K02的挿塞均拔掉,则科斯塔斯特环处于开环状态,可用于开环检查,便于环路各部件故障压缩和分析。

(二)QPSK调制/解调实验

当进行QPSK调制时,工作状态予置开关4SW02置于01101,此时由CPLD产生的四相调相信号直接被加到37TP01,经滤波放大和插塞37K01、37K02后从37TP02输出。

从而实现QPSK调制信号的发送。

此时I路和Q路的基带调制信号也由CPLD产生并直接加到37P04和37P05,以供实验时测量。

QPSK信号解调仅利用二相科斯塔斯特环解调电路中的同相和正交乘法器、低通滤波器及整形等电路,实现四相信号的正交解调。

此时同相和正交两个载波不是从环路提取,而是由CPLD直接提供。

QPSK解调时开关38K01、38K02置于的2、3位(挿在右边),此时科斯塔斯特环开环,并通过开关分别把四相解调的正交载波F0及同相载波F90直接加到两正交乘法器,这样简化了实现电路。

四相解调时,38U05的7脚经38U07A.D两非门后输出为I路的解调信号,可从38P02测量;38U04的7脚经非门38U07B.C输出为Q路的解调信号,可从38P03测量。

(三)ASK调制/解调实验

ASK调制其实现电路与PSK相同,此时仅在调制电路中把反相载波信号通过挿塞37K02将其切断,这样PSK调制就变成了ASK调制。

四、各测量点及可调元件的作用

1.PSKQPS调制模块

37K01:

PSK、ASK已调信号连接揷塞。

当进行PSK实验时,因PSK是两ASK已调信号叠加。

①位揷塞揷入,输出“1”码的已调信号;②位揷塞揷入,输出“0”码的已调信号。

当进行ASK实验时仅需①位揷塞揷入。

37K02:

QPSK已调信号连接揷塞。

当进行QPSK实验时,④位揷塞揷入,输出QPSK已调信号,此时37K01两挿塞必须断开。

③位揷座接点为空头,用以放置暂不用的挿塞,以免挿塞丢失。

跳线开关37KO1、37K02挿塞位置,请参见下表。

调制方式

跳线开关37KO1、37K02位置

PSK

①、②

ASK

①、③

QPSK

③、④

37W01:

调节反相载波幅度大小。

37P01:

外加数字基带信号输入铆孔。

37TP01:

频率为1.024MHz方波信号,由4U01芯片(EPM240)编程产生。

37TP02:

同相1.024MHZ载波(正弦波)信号,

37TP03:

反相1.024MHZ载波(正弦波)信号,调节电位器37W01使它与37TP02测量点的0相载波幅度大小相等。

37TP04:

QPSK调制I路调制信号,它来自CPLD电路。

37TP05:

QPSK调制Q路调制信号,它来自CPLD电路。

37P02:

PSK、QPSK已调信号输出铆孔。

输出什么信号由开关37K01、37K02状态决定:

①位揷塞揷入,其它均断开时,37P02输出为同相载波ASK信号;

②位揷塞揷入,其它均断开时,37P02输出为反相载波ASK信号;

①和②位揷塞都揷入,37P02输出为两ASK已调信号叠加,即PSK已调信号。

(注意:

两种相位载波幅度需调整相同,否则调制信号在相位跳变处易失真)

④位揷塞揷入,其它均断开时,37P02输出为QPSK已调信号。

2.PSKQPS解调模块

38W01:

载波提取电路中锁相环压控振荡器频率调节电位器。

38P01:

PSK、QPSK待解调信号输入铆孔。

38K01:

解调载波选择开关:

揷在左边为PSK正交载波,挿在右边为QPSK正交载波(F9O)

38K02:

解调载波选择开关:

揷在左边为PSK同相载波,挿在右边为QPSK同相载波(FO)

38TP01:

锁相环压控振荡器2.048MHz载波信号输出。

建议用频率计监视该测量点上的信号频率,有偏差时可调节38W01,PSK解调时,当其准确而稳定地锁定在2.048MHz,则可解调输出数字基带信号。

38TP02:

频率为1.024MHz的正交载波(方波)输出信号。

38TP03:

频率为1.024MHz的同相载波(方波)输出信号。

38P02:

PSK解调输出/QPSK解调I路输出铆孔。

PSK方式的科斯塔斯环解调时存在相位模糊问题,解调出的基带信号可能会出现倒相情况;DPSK方式解调后基带信号为相对码,相绝转换由下面的“复接/解复接、同步技术模块”完成。

38P03:

QPSK解调Q路输出铆孔。

3.复接/解复接、同步技术模块

39SW01:

功能设置开关。

设置“0010”,为32K相对码、绝对码转换。

39P01:

外加基带信号输入铆孔。

39P07:

相绝码转换输出铆孔。

五、实验内容及步骤

(一)PSK(DPSK)调制/解调实验

1.插入有关实验模块:

在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PSK调制模块”、“噪声模块”、“PSK解调模块”、“同步提取模块”,插到底板“G、A、B、C、I”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。

注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。

2.PSK、DPSK信号线连接:

绝对码调制(PSK)时的连接:

用专用导线将4P01、37P01;37P02、3P01;3P02、38P01连接。

相对码调制(DPSK)时的连接:

用专用导线将4P03、37P01;37P02、3P01;3P02、38P01;38P02、39P01连接。

注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔。

3.加电:

打开系统电源开关,底板的电源指示灯正常显示。

若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

4.基带输入信号码型设置:

拨码器4SW02设置为“00001“,4P01产生32K的15位m序列输出;

4P03输出为4P01波形的相对码。

5.跳线开关设置:

37K01①位和②位都揷入挿塞。

6.载波幅度调节:

双踪示波器分别接在37P01和37P02,观测调制信号和己调波,调节电位器37W01

使正交载波幅度和同相载波幅度大小相等。

7.相位调制信号观察:

(1)PSK调制信号观察:

双踪示波器,触发测量探头测试4P01点,另一测量探头测试37P02,调节示波器使两波形同步,观察BPSK调制输出波形,记录实验数据。

(2)DPSK调制信号观察:

双踪示波器,触发测量探头测试4P03点,另一测量探头测试37P02,调节示波器使两波形同步,观察DPSK调制输出波形,记录实验数据。

8.噪声模块调节:

调节3W01,将3TP01噪声电平调为0;调节3W02,使3P02信号峰峰值2~3.6V。

9.PSK解调参数调节:

调节38W01电位器,使压控振荡器工作在2048KHZ,同时可用频率计鉴测38TP01点。

注意观察38TP02和38TP03两测量点波形的相位关系。

10.相位解调信号观测:

(1)PSK调制方式

观察38P02点PSK解调输出波形,并作记录,并同时观察PSK调制端37P01的基带信号,比较两者波形相近为准(可能反向,如果波形不一致,可微调38W01)。

(2)DPSK调制方式

“同步提取模块”的拨码器39SW01设置为“0010”。

观察38P02和37P01的两测试点,比较两相对码波形,观察是否存在反向问题;观察39P07和4P01的两测试点,比较两绝对码波形,观察是否还存在反向问题。

作记录。

11.加入噪声相位解调信号观测:

调节3W01逐步增加调制信号的噪声电平大小,看是否还能正确解调出基带信号。

观看完噪声影响,再调节3W01,使噪声为0,以方便后面实验。

12.关机拆线:

实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。

(二)QPSK调制/解调实验

进行QPSK调制/解调实验时揷入有关模块、加电等步骤同PSK实验,不同之処如下:

1.工作状态予置开关4SW02置于01101,此时由CPLD产生的四相调相信号直接被加到37TP01上。

2.37K01、37K02的两个揷塞揷在③、④位,四相调相信号经滤波放大和插塞37K02连接后从37TP02输出。

从而实现QPSK调制信号的发送。

3.示波器接在37TP04,37TP05可以观察来自CPLD产生的I路和Q路的基带调制信号(两信号的基本波形为方波伪码)。

4.示波器接在37T02,可以观察四相调相信号,它是四种相位的正弦波。

5.示波器1、2通道分别接于37TP04和38P02可以同时观察I路基带调制信号和I路解调信号;示波器1、2通道分别接于37TP05和38P03可以同时观察Q路基带调制信号和Q路解调信号。

6.示波器1、2通道分别接于38P02和38P03可以同时观察I路和Q路两路的解调信号。

7.示波器X、Y输人端分别接于38P02和38P03可

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1