机械原理课程设计说明书 爬杆机器人.docx

上传人:b****6 文档编号:4526944 上传时间:2022-12-01 格式:DOCX 页数:10 大小:391.24KB
下载 相关 举报
机械原理课程设计说明书 爬杆机器人.docx_第1页
第1页 / 共10页
机械原理课程设计说明书 爬杆机器人.docx_第2页
第2页 / 共10页
机械原理课程设计说明书 爬杆机器人.docx_第3页
第3页 / 共10页
机械原理课程设计说明书 爬杆机器人.docx_第4页
第4页 / 共10页
机械原理课程设计说明书 爬杆机器人.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

机械原理课程设计说明书 爬杆机器人.docx

《机械原理课程设计说明书 爬杆机器人.docx》由会员分享,可在线阅读,更多相关《机械原理课程设计说明书 爬杆机器人.docx(10页珍藏版)》请在冰豆网上搜索。

机械原理课程设计说明书 爬杆机器人.docx

机械原理课程设计说明书爬杆机器人

机械原理课程设计

设计说明

设计题目:

爬杆机器人

汽车与交通工程学院学院车辆0806

 

指导老师:

壬劲松

1.设计题目

1.1设计目的…

1.2设计题目简介

1.3设计条件及设计要求

2.运动方案设计

2.1机械预期的功能要求

2.2功能原理设计

2.3运动规律设计

2.3.1

工艺动作分解

2.3.2

运动方案选择

2.3.3

执行机构形式设计

2.3.4

运动和动力分析

2.3.5

执行系统运动简图

3.计算内容

4.应用前景

5.个人小结

6.参考资料

10

11

12

 

 

13

附录

1.1设计目的

机械设计是根据使用要求对机械的工作原理、结构、运动方式、力和能量的

传递方式、各个零件的材料和形状尺寸以及润滑方式等进行构思、分析和计算,并将其转化为制造依据的工作过程。

机械设计是机械产品生产的第一步,是决定机械产品性能的最主要环节,整

个过程蕴涵着创新和发明。

目的:

为了综合运用机械原理课程的理论知识,分析和解决与本课程有关的

实际问题,使所学知识进一步巩固和加深

1.2设计题目简介

课程设计名为爬杆机器人。

该机器

人模仿虫蠕动的形式向上爬行,其爬行

运用简单的曲柄滑块机构。

其中电机与

曲柄固接,驱动装置运动。

曲柄与连杆

铰接,其另一端分别铰接一自锁套(即

上下两个自锁套),它们是实现上爬的关

圆杆

键结构。

当自锁套有向下运动的趋势时,

由力的传递传到自锁套,球、锥管与圆

上自琐套

£3—

杆之间形成可靠的自锁,阻止构件向下

运动,而使其运动的方向始终向上(运

动示意见右图)。

1.3设计条件及设计要求

首先确定机器人运动的机构原理及所爬行管道的有关数据,

制定多套运动方

案。

再查阅相关资料,通过精确的计算,对设计题目进行创新设计和运动仿真,

最后在多方面的考虑下确定一套方案并完成整套课程设计说明书。

2.运动方案设计

该机器人模仿的动作是沿杆向上爬行,整个机构为曲柄滑块机构,而且目前所设计机器人爬行的杆是圆杆。

 

2.1机械预期的功能要求

通过电机的驱动和减速,给予曲柄一个绕定轴旋转的主动力,在该力的驱使

F带动连杆及相应的自锁装置,由两个自锁套的先后自锁和曲柄连杆机构带动机

器人向上爬行。

2.2功能原理设计

通常情况下,一部的机器需要通过电机带动一系列复杂的机构使其正常运

转,这其中涉及到很多简单且基本的机械机构。

当然,也可以直接通过电机带动

整部机器的运转,这完全取决于机器所需完成的工作以及设计该机器时所面临的

种种实际情况。

针对该爬杆机器人,提出了两套设计方案,分别是:

由曲柄滑块机构带动和

由气压元件直接驱动。

首先,来看一下曲柄滑块机构是如何工作的。

在平面连杆机构中,能绕定轴或定点作整周回转的构件被称为曲柄。

而通过

改变平面四杆机构中构件的形状和运动尺寸能将其演化为不同的机构形式,

就曲

柄滑块机构而言,它是通过增加铰链四杆机构中摇杆的长度至无穷大而演变过来

的。

改机构实际上是由

曲柄一端铰接在机

"ZZZ.02'

架上,另一端铰接一连

杆,连杆的另一端联结

一滑块,在曲柄为主动

『F“8件运动时带动连杆,连

杆又带动滑块,使其在

平面某一范围内做直

其次是气动的原理。

线往复运动(图1)。

该运动原理与上述的曲柄滑块机构相比,在保留两滑块作为自锁装置的前提

下,省略了联结两滑块的传动装置,转而用两个汽缸直接带动两个滑块的上下移

动。

这样的设计更直接也更简洁,至于两者到底哪个更合理呢?

 

2.3运动规律设计

2.3.1工艺动作分解

首先,我们基于曲柄滑块机构的启示,想到了在曲柄与连杆的两端分别铰接上两个滑块(即作为自锁套),使两个滑块分别作为机架交替上升,从而实现爬

杆动作。

其中上滑块与曲柄相连,相应的连杆接下滑块。

当机构具有向下运动的

为向上的动力,推动机构反而向上运动。

于是,我们就把电机与曲柄固接作为驱动装置,连杆作为传动,两滑块作为自锁装置。

该爬杆机器人

的设计装配图如图2:

不断调整内部结构的具体尺

寸。

很简单,想想为什么当初要把一个原本简简单单的矩形滑块做成如上图示的这样的形状:

套住圆杆的两端多出了两个梯形状的“耳朵”,而且这“耳朵”还是中空的。

在这中空的空间里分别放置两个小球,此小球的直径小于梯形底边而大于

梯形顶边(I梯顶<d球<1梯底)。

言外之意,此小球是能够卡在这梯形的空间里的。

这样也就形成了真正意义上的自锁。

若电机固接的曲柄是逆时针转动。

1)曲柄在底端转至顶端的过程中,经力的分析,下自锁套受到向上的拉力,

与此同时,上自锁套受的却是往下的拉力,与上面的相反,其具有向下运动的趋

势,内部的小球脱离自锁套的底部,又因d球>1梯顶,那么小球就被卡在了梯形空

间中,此时由于小球的被固定而使整个自锁套看作是一个机架铰接曲柄一般。

(见左下图)

2)曲柄由顶端向底端逆时针转动时,上下滑块的受力情况恰与第一种情况相反,下自锁套因受力自锁而被固定,此时上自锁套仍向上运动,在曲柄过最底

(见中下图)

端时又出现了第一种情况。

于是,两滑块周而复始交替向上爬。

在气动方面,由于没有联结用的传动机构,因而直接由气动元件带动两自锁

套往上移动。

我们选用两个汽缸作为主要的气动元件,利用作用力与反作用力的

(见右

原理,由其带动上下两个自锁套分别自锁,达到机器人爬杆的最终目的。

上图)

2.3.2运动方案选择

上面所设计的爬杆过程都是在理想的情况下,很多实际因素都没有考虑进去:

如摩擦力的大小(即管壁与小球接触面的摩擦系数),在曲柄过上下两滑块极限位置时,自锁套内由于小球在内部运动的关系,自锁套所要进行的向下运动

的位移,以及上下自锁套、曲柄和连杆的质量,还有电机的功率、转动速度,汽缸的推程大小、自重,所需气包的容量及连接方式等等。

现在我们结合两者的利弊,着重分析一下各自的优缺点。

就米用汽缸驱动而言,它形式简单、结构简便,从机械设计角度而言讲究尽量采用基本机构,设计的机构要简单、可靠。

而汽缸则融会了上述的优点,它由驱动机构直接带动两个自锁滑块,避免了两者间的连接机构,精简了构件之间的

运动时

它还能够随

连接。

此外,该机构具有环保等特点,它利用空气作为动力源,无污染、无噪音,而且运行速度快,可以在短时间内使机器人爬到杆的顶端,身携带气包作为动力源,可以做到无线操作。

制造方便、

就采用曲柄滑块结构而言,它属于平面连杆机构,具有结构简单、

运动副为低副,能承受较大载荷;但平衡困难,不易用于高速。

我们设计的机构是由电机经减速直接驱动的,和利用气动原理相比它多了一套传动和连接机构,但该机构运用的原理简单,设计合理,而且它不仅能在自杆上爬行,更能在弯曲的管道外爬行,具体的示意图见下。

综上所述,可以选取“曲柄滑块机构”作为该爬杆机器人的最终运动方案。

2.3.3执行机构形式设计

针对上述的种种实际情况,在设计此爬杆机器人的时候全面考虑各方面的因

素,从而确定各构件的尺寸与制造构件的材料。

祥见下表

机构名称

构件尺寸

所选材料

选用理由

曲柄滑块

曲柄

60m(轴距)

2mn铝板

价格便宜、材质轻便、成型后具有时效

强化性

连杆

150(轴距)

2mn铝板

价格便宜、材质轻便、成型后具有时效

强化性

锥管(4个)

2mn铝板

价格便宜、材质轻便、成型后具有时效

强化性

自锁机构

圆球(4个)

①50mm

成品橡胶

取材方便、具有高韧性、材质轻盈

可是这样一个爬杆机构是一个封闭的机构,那怎样才能把机器人安装到所要

爬的管壁上呢?

由此,设计的自锁套可以多一个连接装置,在两个形状对称的锥

管对接处装上铰链,这样自锁套就能开合,自如地包拢住爬杆,然后在自锁零件

«||

4。

的对面接口处插上一个联结销,完整的一个自锁套就套在了圆杆上。

联结销的形状见图

对于此类机构,一定的摩擦力也是保证自锁发

生作用的关键。

因此对各构件的材料也是有相当的

要求。

经过筛选,我们决定曲柄、连杆与锥管用铝

板来制造,小球的材料则用橡胶。

橡胶的表面比较

粗糙,且弹性性能较好,那么小球在自锁套作用时

能卡得比较牢靠,不会发生自转等打滑现象,使整个机构下滑而影响上爬的效果。

在自锁套需解锁

时,由于橡胶具有很高的韧性,它能立刻恢复原来的形状,不会因无法恢复形变

而使下一步上爬动作失效。

2.3.4运动和动力分析

在设定了曲柄与连杆的长度后,每一步机构各构件的上升位移便也能自然而

然地计算出来了。

当曲柄逆时针由最底端转至最顶端时,下滑块上升2倍曲柄的长度位移,即

120mm同样,曲柄逆时针由最顶端转动到底端时,上滑块也走过120mm(自锁

套在自锁时的下滑距离不计)。

F面就该机构运动一周的情况列表作一下分析(此时曲柄处于顶端)

曲柄旋转角(逆时针)

上自锁套运动情况

下自锁套运动情况

0°-90°

向上运动120mm

自锁(固定)

90°-180°

自锁(固定)

向上运动120mm

180°-270°

向上运动120mm

自锁(固定)

当然,这样的机构绝非完美无缺的。

首先,设计的自锁套的形状还无法适应

还好的是,这儿设计的自锁套可以根

此机构爬各种杆。

若所要爬的杆直径大小稍有变化,随着它的变动自锁套也必须相应地改变它外伸包拢杆部分的形状大小。

据不同需要换取不同大小、材质的小球。

2.3.5执行系统运动简图

F=3n-(2PI+Ph)=3x3-(2X4-0)=1

3.计算内容

1.解析法

4.应用前景

5.个人小结

6.参考资料

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1