小学数学常用公式.docx
《小学数学常用公式.docx》由会员分享,可在线阅读,更多相关《小学数学常用公式.docx(19页珍藏版)》请在冰豆网上搜索。
小学数学常用公式
小学数学常用公式
小学数学公式:
和差倍及平均数问题
什么是和差问题?
已知大小两个数的和,以及了们的差,求这两个数各是多少的应用题叫做和差问题。
什么是和倍问题?
已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题叫做和倍问题。
什么是差倍问题?
已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题叫做差倍问题。
什么是平均数?
平均数是指在一组数据中所有数据之和再除以数据的个数。
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者和-小数=大数)
差倍问题
差÷(倍数+1)=大数
小数×倍数=大数
(或小数+差=大数)
平均数问题公式
总数量÷总份数=平均数。
相遇问题公式:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
浓度问题公式:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
小学数学公式:
植树问题公式
什么是植树问题?
这类应用题是以“植树”为内容。
凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
植树问题公式:
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距+1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
小学数学公式:
盈亏问题公式
什么是盈亏问题?
是在等分除法的基础上发展起来的。
它的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或者两次都有余,或两次都不足),已知所余和不足的数量,求物品数量和参加分配人数的问题,叫做盈亏问题。
盈亏问题公式:
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。
问:
有多少个小朋友和多少个桃子?
”
解(7+9)÷(10-8)=16÷2
=8(个)……人数
10×8-9=80-9=71(个)……桃子
或8×8+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。
问:
有士兵多少人?
有子弹多少发?
”
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。
有多少学生和多少本本子?
”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏÷(两次每人分配数的差)=人数。
(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈÷(两次每人分配数的差)=人数。
反向行程问题公式
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
工程问题公式
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:
用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。
)
小学数学公式:
归一问题。
归一问题:
已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
归一问题可以分为直进归一,返回归一两种.在一些实际问题中,常常要先算出一个单位的数量是多少,然后求所需求的问题。
归一问题有:
(1)直进归一.
3支铅笔要4角8分,买同样的5支铅笔要多少钱?
需先求买1支铅笔要几分,再求买5支铅笔要多少钱.列式为:
48÷3×5=80(分).
(2)返回归一(逆归一).
例如:
“一辆汽车4小时行120千米,照这样计算,行180千米要用几小时?
”
先求平均1小时行多少千米,再求行180千米要几小时.列式为:
180÷(120÷4)=180÷30=6(时).
(3)两次归一.
例如:
“2台拖拉机4天耕地32公顷,照这样计算,5台拖拉机7天耕地多少公顷?
”
先求1台拖拉机1天耕地多少公顷,再求5台拖拉机7天耕地多少公顷.列式为:
32÷2÷4×5×7=140(公顷).
求标准数应用题公式
比较数÷与比较数对应的分(百分)率=标准数;
增长数÷增长率=标准数;
减少数÷减少率=标准数;
两数和÷两率和=标准数;
两数差÷两率差=标准数;
小学数学公式:
归总问题
归总问题
【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量
总量÷1份数量=份数
总量÷另一份数=另一每份数量
【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例:
服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?
答:
现在可以做904套。
小学数学公式:
同向行程问题
行程问题:
关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。
解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
同时相向而行:
路程=速度和×时间
同时相向而行:
相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):
追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):
路程=速度差×时间。
行程问题
行程问题:
关于走路、行车等问题,一般都是计算路程,时间、速度,叫做行程问题。
解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
一般行程问题公式
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
利润与折扣公式:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣〈1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
列车过桥问题公式
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
鸡兔同笼问题公式
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?
”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。
(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。
(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?
”
解一(4×1000-3525)÷(4+15)
=475÷19=25(个)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。
它的解法显然可套用上述公式。
)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?
”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
方阵问题公式
(1)实心方阵:
(外层每边人数)2=总人数。
(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。
或者是
(最外层每边人数-层数)×层数×4=中空方阵的人数。
总人数÷4÷层数+层数=外层每边人数。
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一先看作实心方阵,则总人数有
10×10=100(人)
再算空心部分的方阵人数。
从外往里,每进一层,每边人数少2,则进到第四层,每边人数是
10-2×3=4(人)
所以,空心部分方阵人数有
4×4=16(人)
故这个空心方阵的人数是
100-16=84(人)
解二直接运用公式。
根据空心方阵总人数公式得
(10-3)×3×4=84(人)
小学数学公式:
流水问题公式
流水问题:
一般是研究船在“流水”中航行的问题。
它是行程问题中比较特殊的一种类型,它也是一种和差问题。
它的特点主要是考虑水速在逆行和顺行中的不同作用。
流水问题公式:
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
行船问题公式
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
求分率、百分率问题的公式
比较数÷标准数=比较数的对应分(百分)率;
增长数÷标准数=增长率;
减少数÷标准数=减少率。
或者是
两数差÷较小数=多几(百)分之几(增);
两数差÷较大数=少几(百)分之几(减)。
求比较数应用题公式
标准数×分(百分)率=与分率对应的比较数;
标准数×增长率=增长数;
标准数×减少率=减少数;
标准数×(两分率之和)=两个数之和;
标准数×(两分率之差)=两个数之差。
利率问题公式
利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。
(1)单利问题:
本金×利率×时期=利息;
本金×(1+利率×时期)=本利和;
本利和÷(1+利率×时期)=本金。
年利率÷12=月利率;
月利率×12=年利率。
(2)复利问题:
本金×(1+利率)存期期数=本利和。
例如,“某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?
”
解
(1)用月利率求。
3年=12月×3=36个月
2400×(1+10.2%×36)
=2400×1.3672
=3281.28(元)
(2)用年利率求。
先把月利率变成年利率:
10.2‰×12=12.24%
再求本利和:
2400×(1+12.24%×3)
=2400×1.3672 =3281.28(元)(答略
小学数学图形计算公式
小学数学图形计算公式:
正方形
正方形特征:
四条边都相等,四个角都是直角的四边形。
正方形计算公式:
正方形的周长=边长×4公式:
C=4a
正方形的面积=边长×边长公式:
S=a×a
正方体的体积=边长×边长×边长公式:
V=a×a×a
小学数学图形计算公式:
长方形
长方形特征:
对边相等,4个角都是直角的四边形。
都有两边对称轴。
长方形计算公式:
长方形的周长=(长+宽)×2公式:
C=(a+b)×2
长方形的面积=长×宽公式:
S=a×b
长方体的体积=长×宽×高公式:
V=a×b×h
小学数学图形计算公式:
三角形
三角形特征:
由三条线段围成的图形。
内角和是180度。
三角形具有稳定性,三角形有三条高。
三角形计算公式:
s面积a底h高
面积=底×高÷2
s=ah÷2
三角形高=面积×2÷底
三角形底=面积×2÷高
小学数学图形计算公式:
平形四边形
平行四边形特征:
两组对边分别平行的四边形。
相对的边平行且对等。
对角相等,相邻的两个角的度数之和为180度。
平行四边行容易变形。
平形四边形计算公式:
平行四边形的面积=底×高公式:
S=a×h
小学数学图形计算公式:
梯形
梯形的特征:
只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
梯形面积计算公式:
s:
面积,a:
上底,b:
下底,h:
高
面积=(上底+下底)×高÷2
s=(a+b)×h÷2
小学数学图形计算公式:
圆形
圆的特征:
圆的认识:
平面上的一种曲线图形。
圆中心的一点叫做圆心,一般用字母o表示。
半径:
连接圆心和圆上任意一点的线段叫做半径,一般用r表示。
直径:
在现一个圆里,有无数条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径,一般用d表示。
直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定,圆有无数条对称轴。
圆的计算公式:
直径=半径×2公式:
d=2r
半径=直径÷2公式:
r=d÷2
圆的周长=圆周率×直径公式:
c=πd=2πr
圆的面积=半径×半径×π公式:
S=πrr
小学数学图形计算公式:
圆柱体
圆柱体的特征:
圆柱的认识:
圆柱的下下两个面叫做底面。
圆柱两个底面这间的距离叫做高。
圆柱体的计算公式:
v:
体积h:
高s;底面积r:
底面半径c:
底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
小学数学图形计算公式:
圆锥体
圆锥体的特征:
圆锥体的认识:
圆锥的底面是个圆,圆锥的侧面是个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
圆锥体的计算公式
v:
体积h:
高s;底面积r:
底面半径
体积=底面积×高÷3
总数÷总份数=平均数
理解应用概念
1、加法交换律:
两数相加交换加数的位置,和不变。
a+b=b+a
2、加法结合律:
三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
(a+b)+c=a+(b+c)
3、一个数连续减去两个数,可以先把后两个数相加,再用这个数减去它们的和,结果不变。
a-b-c=a-(b+c)
4、乘法交换律:
两数相乘,交换因数的位置,积不变。
a×b=b×a
5、乘法结合律:
三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
(a×b)×c=a×(b×c)
6、乘法分配律:
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
a×(b+c)=a×b+a×c
7、一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
a÷b÷c=a÷(b×c)
8、除法的性质(商不变性质):
在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
9、简便乘法:
被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
10、什么叫等式?
等号左边的数值与等号右边的数值相等的式子叫做等式。
11、什么叫方程式?
答:
含有未知数的等式叫方程式。
12、等式的基本性质
(1):
等式两边同时加(或减)一个相同的数,等式仍然成立。
等式的基本性质
(2):
等式两边同时乘(或除以)一个相同的数(0除外),等式仍然成立。
13、分数:
把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
14、分数的加减法则:
同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
15、分数大小的比较:
同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
16、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
17、真分数:
分子比分母小的分数叫做真分数。
假分数:
分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
带分数:
把假分数写成整数和真分数的形式,叫做带分数。
18、分数的基本性质:
分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
19、一个数除以分数,等于这个数乘以分数的倒数。
20、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
21、什么叫比:
两个数相除就叫做两个数的比。
如:
2÷5或3:
6或1/3
比的基本性质:
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
22、什么叫比例:
表示两个比相等的式子叫做比例。
如3:
6=9:
18
23、比例的基本性质:
在比例里,两外项之积等于两内项之积。
24、解比例:
求比例中的未知项,叫做解比例。
如3:
χ=9:
18
25、正比例:
两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:
y/x=k(k一定)
26、反比例:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:
x×y=k(k一定)
27、百分数:
表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
28、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
29、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
30、要学会把小数化成分数和把分数化成小数的化发。
31、最大公约数:
几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做最大公约数。
)
32、互质数:
公约数只有1的两个数,叫做互质数。
33、最小公因数:
几个数公有的倍数,叫做这几个数的公因数,其中最小的一个叫做这几个数的最小公因数。
34、通分:
把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公因数)
35、约分:
把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公约数)
36、最简分数:
分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。
个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。
37、偶数和奇数:
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
38、质数(素数):
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
39、合数:
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
40、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
41、利率:
利息与本金的