高中物理动量典型例题与易错点详解 生.docx

上传人:b****6 文档编号:4392822 上传时间:2022-12-01 格式:DOCX 页数:22 大小:201.60KB
下载 相关 举报
高中物理动量典型例题与易错点详解 生.docx_第1页
第1页 / 共22页
高中物理动量典型例题与易错点详解 生.docx_第2页
第2页 / 共22页
高中物理动量典型例题与易错点详解 生.docx_第3页
第3页 / 共22页
高中物理动量典型例题与易错点详解 生.docx_第4页
第4页 / 共22页
高中物理动量典型例题与易错点详解 生.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

高中物理动量典型例题与易错点详解 生.docx

《高中物理动量典型例题与易错点详解 生.docx》由会员分享,可在线阅读,更多相关《高中物理动量典型例题与易错点详解 生.docx(22页珍藏版)》请在冰豆网上搜索。

高中物理动量典型例题与易错点详解 生.docx

高中物理动量典型例题与易错点详解生

动量考点例析

一、夯实基础知识

1、深刻理解动量的概念

(1)定义:

物体的质量和速度的乘积叫做动量:

p=mv

(2)动量是描述物体运动状态的一个状态量,它与时刻相对应。

(3)动量是矢量,它的方向和速度的方向相同。

(4)动量的相对性:

由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。

题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。

(5)动量的变化:

.由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。

A、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。

B、若初末动量不在同一直线上,则运算遵循平行四边形定则。

(6)动量与动能的关系:

,注意动量是矢量,动能是标量,动量改变,动能不一定改变,但动能改变动量是一定要变的。

2、深刻理解冲量的概念

(1)定义:

力和力的作用时间的乘积叫做冲量:

I=Ft

(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。

(3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。

如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。

如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。

对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。

(4)高中阶段只要求会用I=Ft计算恒力的冲量。

对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。

(5)要注意的是:

冲量和功不同。

恒力在一段时间内可能不作功,但一定有冲量。

特别是力作用在静止的物体上也有冲量。

3、深刻理解动量定理

(1).动量定理:

物体所受合外力的冲量等于物体的动量变化。

既I=Δp

(2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。

这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。

(3)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。

(4)现代物理学把力定义为物体动量的变化率:

(牛顿第二定律的动量形式)。

(5)动量定理的表达式是矢量式。

在一维的情况下,各个矢量必须以同一个规定的方向为正。

4、深刻理解动量守恒定律

(1).动量守恒定律:

一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。

即:

(2)动量守恒定律成立的条件

系统不受外力或者所受外力之和为零;

系统受外力,但外力远小于内力,可以忽略不计;

系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

(3).动量守恒定律的表达形式:

除了

,即p1+p2=p1/+p2/外,还有:

Δp1+Δp2=0,Δp1=-Δp2和

二、解析典型问题

问题1:

掌握求恒力和变力冲量的方法。

恒力F的冲量直接根据I=Ft求,而变力的冲量一般要由动量定理或F-t图线与横轴所夹的面积来求。

例1、质量为m的小球由高为H的、倾角为θ光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?

例2、一个物体同时受到两个力F1、F2的作用,F1、F2与时间t的关系如图1所示,如果该物体从静止开始运动,经过t=10s后F1、F2以及合力F的冲量各是多少?

例3、一质量为100g的小球从0.80m高处自由下落到一厚软垫上.若从小球接触软垫到小球陷至最低点经历了0.2s,则这段时间内软垫对小球的冲量为________.(取g=10m/s2,不计空气阻力).

问题2:

掌握求动量及动量变化的方法。

求动量的变化要用平行四边形定则或动量定理。

例4、以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变化是多少?

例5、一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。

若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ,则()

A、过程I中钢珠的动量的改变量等于重力的冲量

B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小

C、I、Ⅱ两个过程中合外力的总冲量等于零

D、过程Ⅱ中钢珠的动量的改变量等于零

问题3:

能应用动量定理求解相关问题

遇到涉及力、时间和速度变化的问题时.运用动量定理解答往往比运用牛顿运动定律及运动学规律求解简便。

应用动量定理解题的思路和一般步骤为:

(l)明确研究对象和物理过程;

(2)分析研究对象在运动过程中的受力情况;

(3)选取正方向,确定物体在运动过程中始末两状态的动量;

(4)依据动量定理列方程、求解。

1.简解多过程问题。

例6、一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经过t3=6s停下来。

试求物体在水平面上所受的摩擦力。

由例6可知,合理选取研究过程,能简化解题步骤,提高解题速度。

本题也可以用牛顿运动定律求解。

同学们可比较这两种求解方法的简繁情况。

2.求解平均力问题

例7、质量是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为1.2s,安全带伸直后长5m,求安全带所受的平均冲量.(g=10m/s2)

3、求解曲线运动问题

例8、如图2所示,以Vo=10m/s2的初速度、与水平方向成300角抛出一个质量m=2kg的小球.忽略空气阻力的作用,g取10m/s2.求抛出后第2s末小球速度的大小.

 

注意:

动量定理不仅适用于物体做直线运动的问题,而且也适用物体做曲线运动的问题,在求解曲线运动问题中,一般以动量定理的分量形式建立方程,即:

Fxt=mVx-mVx0Fyt=mVy-mVy0

4、求解流体问题

例9、某种气体分子束由质量m=5.4X10-26kg速度V=460m/s的分子组成,各分子都向同一方向运动,垂直地打在某平面上后又以原速率反向弹回,若分子束中每立方米的体积内有n0=1.5X1020个分子,求被分子束撞击的平面所受到的压强.

平面受到的压强P为:

注意:

处理有关流体(如水、空气、高压燃气等)撞击物体表面产生冲力(或压强)的问题,可以说非动量定理莫属.解决这类问题的关键是选好研究对象,一般情况下选在极短时间△t内射到物体表面上的流体为研究对象

5、对系统应用动量定理。

系统的动量定理就是系统所受合外力的冲量等于系统总动量的变化。

若将系统受到的每一个外力、系统内每一个物体的速度均沿正交坐标系x轴和y轴分解,则系统的动量定理的数学表达式如下:

对于不需求解系统内部各物体间相互作用力的问题,采用系统的动量定理求解将会使求解简单、过程明确。

例10、如图3所示,质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为V0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。

若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?

 

例11、如图4所示,矩形盒B的质量为M,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面间的动摩擦因数分别μ1、μ2,开始时二者均静止。

现瞬间使物体A获取一向右且与矩形盒B左、右侧壁垂直的水平速度V0,以后物体A在盒B的左右壁碰撞时,B始终向右运动。

当A与B最后一次碰撞后,B停止运动,A则继续向右滑行距离S后也停止运动,求盒B运动的时间t。

 

问题4:

能根据动量守恒条件判定系统的动量是否守恒?

例12、如图5所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中:

A、动量守恒、机械能守恒

B、动量不守恒、机械能不守恒

C、动量守恒、机械能不守恒

D、动量不守恒、机械能守恒

例13、质量为M的小车中挂有一个单摆,摆球的质量为M0,小车和单摆以恒定的速度V0沿水平地面运动,与位于正对面的质量为M1的静止木块发生碰撞,碰撞时间极短,在此过程中,下列哪些说法是可能发生的()

A.小车、木块、摆球的速度都发生变化,分别为V1、V2和V3,且满足:

(M+M0)V0=MV1+M1V2+M0V3;

B.摆球的速度不变,小车和木块的速度为V1、V2,且满足:

MV0=MV1+M1V2;

C.摆球的速度不变,小车和木块的速度都为V,且满足:

MV0=(M+M1)V;

D.小车和摆球的速度都变为V1,木块的速度变为V2,且满足:

(M+M0)V0=(M+M0)V1+M1V2

问题5:

能根据动量守恒定律求解“合二为一”和“一分为二”问题。

“合二为一”问题:

两个速度不同的物体,经过相互作用,最后达到共同速度。

“一分为二”问题:

两个物体以共同的初速度运动,由于相互作用而分开各自以不同的速度运动。

例14、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。

现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。

假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时:

(1)两车的速度各为多少?

(2)甲总共抛出了多少个小球?

 

例15、人和冰车的总质量为M,另有一个质量为m的坚固木箱,开始时人坐在冰车上静止在光滑水平冰面上,某一时刻人将原来静止在冰面上的木箱以速度V推向前方弹性挡板,木箱与档板碰撞后又反向弹回,设木箱与挡板碰撞过程中没有机械能的损失,人接到木箱后又以速度V推向挡板,如此反复多次,试求人推多少次木箱后将不可能再接到木箱?

(已知

 

问题6:

会用动量守恒定律解“人船模型”问题

两个物体均处于静止,当两个物体存在相互作用而不受外力作用时,系统动量守恒。

这类问题的特点:

两物体同时运动,同时停止。

例16、载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?

例17、如图7所示,质量为M的车静止在光滑水平面上,车右侧内壁固定有发射装置。

车左侧内壁固定有沙袋。

发射器口到沙袋的距离为d,把质量为m的弹丸最终射入沙袋中,这一过程中车移动的距离是_______。

例18、质量为M、长为L的船静止在静水中,船头及船尾各站着质量分别为m1及m2的人,当两人互换位置后,船的位移有多大?

问题7:

会分析求解“三体二次作用过程”问题

所谓“三体二次作用”问题是指系统由三个物体组成,但这三个物体间存在二次不同的相互作用过程。

解答这类问题必须弄清这二次相互作用过程的特点,有哪几个物体参加?

是短暂作用过程还是持续作用过程?

各个过程遵守什么规律?

弄清上述问题,就可以对不同的物理过程选择恰当的规律进行列式求解。

例19、光滑的水平面上,用弹簧相连的质量均为2kg的A、B两物块都以V0=6m/s的速度向右运动,弹簧处于原长,质量为4kg的物块C静止在前方,如图8所示。

B与C碰撞后二者粘在一起运动,在以后的运动中,当弹簧的弹性势能达到最大为J时,物块A的速度是m/s。

例20、如图9所示为三块质量均为m,长度均为L的木块。

木块1和木块2重叠放置在光滑的水平桌面上,木块3沿光滑水平桌面运动并与叠放在下面的木块2发生碰撞后粘合在一起,如果要求碰后原来叠放在上面的木块1完全移到木块3上,并且不会从木块3上掉下,木块3碰撞前的动能应满足什么条件?

设木块之间的动摩擦因数为。

 

问题8、会分析求解“二体三次作用过程”问题

所谓“二体三次作用”问题是指系统由两个物体组成,但这两个物体存在三次不同的相互作用过程。

求解这类问题的关键是正确划分三个不同的物理过程,并能弄清这些过程的特点,针对相应的过程应用相应的规律列方程解题。

例21、如图10所示,打桩机锤头质量为M,从距桩顶h高处自由下落,打在质量为m的木桩上,且在极短时间内便随桩一起向下运动,使得木桩深入泥土的距离为S,那么在木桩下陷过程中泥土对木桩的平均阻力是多少?

 

例22、如图11所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ。

最初木板静止,A、B两木块同时以方向水平向右的初速度V0和2V0在木板上滑动,木板足够长,A、B始终未滑离木板。

求:

(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;

(2)木块A在整个过程中的最小速度。

问题9:

会用动量守恒定律解“碰撞类”问题

1.碰撞的特点

(1)作用时间极短,内力远大于外力,总动量总是守恒

(2)碰撞过程中,总动能不增。

因为没有其它形式的能量转化为动能。

(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。

(4)碰撞过程中,两物体产生的位移可忽略。

2.判定碰撞可能性问题的分析思路

(1)判定系统动量是否守恒。

(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。

(3)判定碰撞前后动能是不增加。

例23、甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是P1=5kg.m/s,P2=7kg.m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10kg.m/s,则二球质量m1与m2间的关系可能是下面的哪几种?

A、m1=m2B、2m1=m2C、4m1=m2D、6m1=m2。

例24、如图12所示,半径和动能都相等的两个小球相向而行.甲球质量m甲大于乙球质量m乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是下述哪些情况?

A.甲球速度为零,乙球速度不为零

B.两球速度都不为零

C.乙球速度为零,甲球速度不为零

D.两球都以各自原来的速率反向运动

问题10:

会用动量守恒定律和能量守恒解“相对滑动类”问题

解决动力学问题,一般有三种途径:

(1)牛顿第二定律和运动学公式(力的观点);

(2)动量定理和动量守恒定律(动量观点);(3)动能定理、机械能守恒定律、功能关系、能的转化和守恒定律(能量观点).以上这三种观点俗称求解力学问题的三把“金钥匙”.如何合理选取三把“金钥匙”解决动力学问题,是老师很难教会的。

但可以通过分别用三把“金钥匙”对一道题进行求解,通过比较就会知道如何选取三把“金钥匙”解决动力学问题,从而提高分析问题解决问题的能力。

例25、如图13所示,一质量为M、长为L的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m<M.现以地面为参照系,给A和B以大小相等、方向相反的初速度(如图1),使A开始向左运动,B开始向右运动,但最后A刚好没有滑离B板,以地面为参照系.

(1)若已知A和B的初速度大小为V0,求它们最后的速度大小和方向.

(2)若初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离.

问题11、会根据图象分析推理解答相关问题

例26、A、B两滑块在一水平长直气垫导轨上相碰,用闪光照相机在t0=0,t1=△t,t2=2·△t,t3=3·△t各时刻闪光四次,摄得如图15所示照片,其中B像有重叠,mB=

mA,可判断()

A.碰前B静止,碰撞发生在60cm处,t=2.5△t;

B.碰前B静止,碰撞发生在60cm处,t=0.5△t;

C.碰后B静止,碰撞发生在60cm处,t=0.5△t;

D.碰后B静止,碰撞发生在60cm处,t=2.5△t。

例27、如图16所示,质量为M的木板静止在光滑水平面上。

一个质量为

的小滑块以初速度V0从木板的左端向右滑上木板。

滑块和木板的水平速度随时间变化的图象如图17所示.某同学根据图象作出如下一些判断:

A.滑块与木板间始终存在相对运动;

B.滑块始终未离开木板;

C.滑块的质量大于木板的质量;

D.在

时刻滑块从木板上滑出。

问题12、会利用数学方法求解物理问题。

例28、用质量为M的铁锤沿水平方向将质量为m、长为L的铁钉敲入木板,铁锤每次以相同的速度V0击钉,随即与钉一起运动并使钉进入木板一定距离。

在每次击进入木板的过程中,钉所受的平均阻力为前一次受击进入木板过程中所受平均阻力的K倍(K>1)。

若第一次敲击使钉进入木板深度为L1,问至少敲击多少次才能将钉全部敲入木板?

并就你的解答讨论要将钉全部敲入木板,L1必须满足什么条件?

三、警示易错试题

典型错误之一、忽视动量守恒定律的系统性

动量守恒定律描述的对象是由两个以上的物体构成的系统,研究的对象具有系统性,若在作用前后丢失任一部分,在解题时都会得出错误的结论。

例29、一门旧式大炮在光滑的平直轨道上以V=5m/s的速度匀速前进,炮身质量为M=1000kg,现将一质量为m=25kg的炮弹,以相对炮身的速度大小u=600m/s与V反向水平射出,求射出炮弹后炮身的速度V/.

典型错误之二、忽视动量守恒定律的矢量性

动量守恒定律的表达式是矢量方程,对于系统内各物体相互作用前后均在同一直线上运动的问题,应首先选定正方向,凡与正方向相同的动量取正,反之取负。

对于方向未知的动量一般先假设为正,根据求得的结果再判断假设真伪。

例30、质量为m的A球以水平速度V与静止在光滑的水平面上的质量为3m的B球正碰,A球的速度变为原来的1/2,则碰后B球的速度是(以V的方向为正方向).

A.V/2,B.─VC.─V/2D.V/2

 

典型错误之三、忽视动量守恒定律的相对性

动量守恒定律表达式中各速度必须是相对同一参考系。

因为动量中的速度有相对性,在应用动量守恒定律列方程时,应注意各物体的速度必须是相对同一参考系的速度。

若题设条件中物体不是相对同一参考系的,必须将它们转换成相对同一参考系的,必须将它们转换成相对同一参考系的速度。

一般以地面为参考系。

例31、某人在一只静止的小船上练习射击,船、人和枪(不包含子弹)及船上固定靶的总质量为M,子弹质量m,枪口到靶的距离为L,子弹射出枪口时相对于枪口的速率恒为V,当前一颗子弹陷入靶中时,随即发射后一颗子弹,则在发射完全部n颗子弹后,小船后退的距离多大?

(不计水的阻力)

 

典型错误之四、忽视动量守恒定律的同时性

动量守恒定律方程两边的动量分别是系统在初、末态的总动量,初态动量的速度都应该是互相作用前同一时刻的瞬时速度,末态动量中的速度都必须是相互作用后同一时刻的瞬时速度。

例32、平静的水面上有一载人小船,船和人共同质量为M,站立在船上的人手中拿一质量为m的物体。

起初人相对船静止,船、人、物体以共同速度V0前进,当人相对于船以速度u向相反方向将物体抛出时,人和船的速度为多大?

(水的阻力不计)。

 

典型错误之五、忽视动量定理的矢量性

例33、蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。

一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m高处。

已知运动员与网接触的时间为1.2s。

若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。

(g=10m/s2)

§4人船模型与反冲运动

知识目标

一、人船模型

1.若系统在整个过程中任意两时刻的总动量相等,则这一系统在全过程中的平均动量也必定守恒。

在此类问题中,凡涉及位移问题时,我们常用“系统平均动量守恒”予以解决。

如果系统是由两个物体组成的,合外力为零,且相互作用前均静止。

相互作用后运动,则由0=m1

+m2

得推论0=m1s1+m2s2,但使用时要明确s1、s2必须是相对地面的位移。

2、人船模型的应用条件是:

两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零.

二、反冲运动

1、指在系统内力作用下,系统内一部分物体向某发生动量变化时,系统内其余部分物体向相反方向发生动量变化的现象

2.研究反冲运动的目的是找反冲速度的规律,求反冲速度的关键是确定相互作用的物体系统和其中各物体对地的运动状态.

规律方法

1、人船模型及其应用

【例1】如图所示,长为l、质量为M的小船停在静水中,一个质量为m的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?

思考:

(1)人的位移为什么不是船长?

(2)若开始时人船一起以某一速度匀速运动,则还满足s2/s1=M/m吗?

【例2】载人气球原静止于高h的高空,气球质量为M,人的质量为m.若人沿绳梯滑至地面,则绳梯至少为多长?

说明:

(1)当问题符合动量守恒定律的条件,而又仅涉及位移而不涉及速度时,通常可用平均动量求解.

(2)画出反映位移关系的草图,对求解此类题目会有很大的帮助.

(3)解此类的题目,注意速度必须相对同一参照物.

【例3】如图所示,一质量为ml的半圆槽体A,A槽内外皆光滑,将A置于光滑水平面上,槽半径为R.现有一质量为m2的光滑小球B由静止沿槽顶滑下,设A和B均为弹性体,且不计空气阻力,求槽体A向一侧滑动的最大距离.

思考:

(1)在槽、小球运动的过程中,系统的动量守恒吗?

(2)当小球运动到槽的最右端时,槽是否静止?

小球能否运动到最高点?

(3)s1+S2为什么等于2R,而不是πR?

【例4】某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内有n颗子弹,每颗子弹的质量为m,枪口到靶的距离为L,子弹水平射出枪口相对于地的速度为v0,在发射后一

发子弹时,前一发子弹已射入靶中,在射完n颗子弹时,小船后退的距离为()

【例5】如图所示,质量为m、半径为R的小球,放在半径为2R,质量为2m的大空心球内.大球开始静止在光滑的水平面上,当小球从图示位置无初速度地沿大球壁滚到最低点时,大球移动的距离是多少?

【例6】如图所示,长20m的木板AB的一端固定一竖立的木桩,木桩与木板的总质量为10kg,将木板放在动摩擦因数为μ=0.2的粗糙水平面上,一质量为40kg的人从静止开始以a1=4m/s2的加速度从B端向A端跑去,到达A端后在极短时间内抱住木桩(木桩的粗细不计),求:

(1)人刚到达A端时木板移动的距离.

(2)人抱住木桩后木板向哪个方向运动,移动的最大距离是多少?

(g取10m/s2)

2、反冲运动的研究

【例7】如图所示,在光滑水平面上质量为M的玩具炮.以射角α发射一颗质量为m的炮弹,炮弹离开炮口时的对地速度为v0。

求玩具炮后退的速度v?

【例8】火箭喷气发动机每次喷出m=200g的气体,喷出气体相对地面的速度为v=1000m/s,设火箭的初质量M=300kg,发动机每秒喷气20次,在不考虑阻力的情况下,火箭发动机1s末的速度是多大?

【例9】用火箭发射人造地球卫星,假设最后一节火箭的燃料用完后,火箭壳体和卫星一起以速度v=7.0×103m/s绕地球做匀速圆周运动;已知卫星质量m=500kg,最后一节火箭壳体的质量M=100kg;某时刻火箭壳体与卫星分离,分离时卫星与火箭壳体沿轨道切线方向的相对速度u=1.8×103m/s.试分析计算:

分离后卫星的速度增加到多大?

火箭壳体的速度多大?

分离后它们将如何运动?

【例10】如图所示,带有1/4圆弧的光滑轨道的小车放在光滑水平地面上,弧形轨道的半径为R,最低点与水平线相切,整个小

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书 > 辩护词

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1