A revised model.docx

上传人:b****5 文档编号:4355368 上传时间:2022-11-30 格式:DOCX 页数:22 大小:21.34KB
下载 相关 举报
A revised model.docx_第1页
第1页 / 共22页
A revised model.docx_第2页
第2页 / 共22页
A revised model.docx_第3页
第3页 / 共22页
A revised model.docx_第4页
第4页 / 共22页
A revised model.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

A revised model.docx

《A revised model.docx》由会员分享,可在线阅读,更多相关《A revised model.docx(22页珍藏版)》请在冰豆网上搜索。

A revised model.docx

Arevisedmodel

Naturalconvectiveboundary-layerflowofananofluidpastavertical

plate:

A.V.Kuznetsov

a,

*,D.A.Nield

b

a

DepartmentofMechanicalandAerospaceEngineering,NorthCarolinaStateUniversity,CampusBox7910,Raleigh,NC27695-7910,USA

b

DepartmentofEngineeringScience,UniversityofAuckland,PrivateBag92019,Auckland1142,NewZealand

articleinfo

Articlehistory:

Received5May2013

Receivedinrevisedform

23July2013

Accepted17October2013

Availableonline4December2013

Keywords:

Nanofluid

Brownianmotion

Thermophoresis

Naturalconvection

Boundarylayer

Verticalplate

abstract

Theproblemofnaturalconvectiveboundary-layerflowofananofluidpastaverticalplateisrevisited.

Themodel,whichincludestheeffectsofBrownianmotionandthermophoresis,isrevisedsothatthe

nanofluidparticlefractionontheboundaryispassivelyratherthanactivelycontrolled.Inthisrespectthe

modelismorerealisticphysicallythanthatemployedbypreviousauthors.

_2013ElsevierMassonSAS.Allrightsreserved.

1.Introduction

ThemodelforananaofluidincludingtheeffectsofBrownian

motionandthermophoresis,introducedbyBuongiorno[1],was

appliedbyKuznetsovandNield[2]totheclassicalproblemstudied

byPohlhausen,KuikenandBejan[3e6],namelyconvective

boundarylayerflowpastaverticalplate.Intheirpioneeringpaper

KuznetsovandNield[2]employedboundaryconditionsonthe

nanoparticlefractionanalogoustothoseonthetemperature.Inthis

notetheproblemisrevisitedandaboundaryconditionthatismore

realisticphysicallyisapplied.Itisnolongerassumedthatonecan

controlthevalueofthenanoparticlefractionatthewall,butrather

thatthenanoparticlefluxatthewalliszero.Thischangenecessitatesarescalingoftheparametersthatareinvolved.

2.Analysis

ThefollowinganalysiscloselyfollowsthatinRef.[2]andsois

describedbrieflyhere.Atwo-dimensionalproblemisconsidered.A

coordinateframeinwhichthex-axisisalignedverticallyupwards

isutilized.Averticalplateisaty¼0.Weassumethataty¼0the

temperatureTtakestheconstantvalueTw.Thefluxofthenanoparticlefractionaty¼0istakentobezero.Theambientvalueof

temperatureisTNandtheambientvalueofthenanoparticlefractionisfN;theambientvaluesareattainedataninfinitedistance

fromthewall.

WeusedtheOberbeck-Boussinesqapproximation.Thegoverningequationsexpressingtheconservationoftotalmass,momentum,thermalenergy,andnanoparticlesare,respectively:

V$v¼0;

(1)

rf

_

vv

vt

þv$Vv

_

¼_VpþmV

2

h

frp

þð1_fÞ

_

n

rf

ð1_bðT_TNÞÞ

oi

g;

(2)

ðrcÞ

f

_

vT

vt

þv$VT

_

¼kV

2

TþðrcÞ

p

½DBVf$VTþðDT=TNÞVT$VT_;

(3)

vf

vt

þv$V4¼DBV

2

fþðDT=TNÞV

2

T:

(4)

InEqs.

(1)e(4)thefieldvariablesarethevelocityv[wewrite

v¼(u,v)],thetemperatureTandthenanoparticlevolumefraction

*Correspondingauthor.

E-mailaddresses:

avkuznet@ncsu.edu(A.V.Kuznetsov),d.nield@auckland.ac.nz

(D.A.Nield).

ContentslistsavailableatScienceDirect

InternationalJournalofThermalSciences

journalhomepage:

1290-0729/$eseefrontmatter_2013ElsevierMassonSAS.Allrightsreserved.

http:

//dx.doi.org/10.1016/j.ijthermalsci.2013.10.007

InternationalJournalofThermalSciences77(2014)126e129

f.Also,rfisthedensityofthebasefluidandm,kandbarethe

viscosity,thermalconductivityandvolumetricexpansioncoefficientofthenanofluid,andrPisthedensityoftheparticles.We

denotedthegravitationalaccelerationbyg.InEqs.(3)and(4)the

coefficientsDBandDTaretheBrowniandiffusioncoefficientandthe

thermophoreticdiffusioncoefficient,respectively,eachnondimensionalizedintermsoftheambientvalueofthetemperature.Itisbeingassumedthetemperaturedoesnotvarymuchfrom

theambienttemperature,andsoDBandDTmayeachbetreatedasa

constant.

Eqs.

(1)e(4)mustbesolvedsubjecttothefollowingboundary

conditions:

u¼v¼0;T¼Tw;DB

vf

vy

þ

DB

TN

vT

vy

¼0aty¼0;(5a,b,c)

u¼v¼0;T/TN;f/fNasy/N:

(6a,b,c)

Asteadystateflowisconsidered.Eq.(5c)isastatementthat,

withthermophoresistakenintoaccount,thenormalfluxofnanoparticlesiszeroattheboundary[7,8].

WeusedtheOberbeck-Boussinesqapproximation.Wealso

madeanassumptionthatthenanoparticleconcentrationisdilute.

Usingasuitablechoiceforthereferencepressure,welinearizedthe

momentumequationandrecastEq.

(2)asfollows:

rf

_

vv

vt

þv$Vv

_

¼_VpþmV

2

h_

rp_rfN

ðf_fNÞ

þð1_fNÞrfNbðT_TNÞ

i

g:

(7)

Basedonascaleanalysis,wenowemploythestandard

boundary-layerapproximation,andexpressthegoverningequationsas

vu

vx

þ

vv

vy

¼0;(8)

vp

vx

¼m

v

2

u

vy

2

_rf

_

u

vu

vx

þv

vu

vy

_

þ

h

ð1_iNÞrfNbgðT_TNÞ

_

_

rp_rfN

gðf_fNÞ

i

;(9)

vp

vy

¼0;(10)

u

vT

vx

þv

vT

vy

¼aV

2

Tþs

"

DB

vf

vy

vT

vy

þ

_

DT

TN

__

vT

vy

_2

#

;(11)

u

vf

vx

þv

vf

vy

¼DB

v

2

f

vy

2

þ

_

DT

TN

_

v

2

T

vy

2

;(12)

where

k

ðrcÞ

f

;s¼

ðrcÞ

p

ðrcÞ

f

:

(13)

Weusedcross-differentiationtoeliminatepfromEqs.(8)and

(9).Wealsointroducedastreamfunctionjdefinedby

vj

vy

;v¼_

vj

vx

:

(14)

Eq.(8)isnowsatisfiedidentically.

Thisleavesuswiththefollowingthreeequations:

vj

vy

v

2

j

vxvy

_

vj

vx

v

2

j

vy

2

_n

v

3

j

vy

3

¼ð1_fNÞrfNbgðT_TNÞ

_

_

rp_rfN

gf(15)

vj

vy

vT

vx

_

vj

vx

vT

vy

¼aV

2

Tþs

"

DB

vf

vy

vT

vy

þ

_

DT

TN

__

vT

vy

_2

#

;(16)

Nomenclature

DBBrowniandiffusioncoefficient

DTthermophoreticdiffusioncoefficient

frescalednanoparticlevolumefraction,definedbyEq.

(20)

ggravitationalaccelerationvector

kthermalconductivity

LeLewisnumber,definedbyEq.(28)

Nrbuoyancyeratioparameter,definedbyEq.(25)

NbBrownianmotionparameter,definedbyEq.(26)

Ntthermophoresisparameter,definedbyEq.(27)

NuNusseltnumber,definedbyEq.(31)

NurreducedNusseltnumber,Nu/Rax

1/4

PrPrandtlnumber,definedbyEq.(24)

ppressure

q

00

wallheatflux

RaxlocalRayleighnumber,definedbyEq.(18)

sdimensionlessstreamfunction,definedbyEq.(20)

Ttemperature

Twtemperatureattheverticalplate

TNambienttemperatureattainedasytendstoinfinity

vvelocity,(u,v)

(x,y)Cartesiancoordinates(x-axisisalignedvertically

upwards,plateisaty¼0)

Greeksymbols

athermaldiffusivity

bvolumetricexpansioncoefficientofthefluid

hsimilarityvariable,definedbyEq.(19)

qdimensionlesstemperature,definedbyEq.(20)

mdynamicviscosityofthefluid

nkinematicviscosity,m/rfN

rffluiddensity

rpnanoparticlemassdensity

(rc)fheatcapacityofthefluid

(rc)peffectiveheatcapacityofthenanoparticlematerial

sparameterdefinedbyEq.(13),(rc)p/(rc)f

fnanoparticlevolumefraction

fNambientnanoparticlevolumefractionattainedasy

tendstoinfinity

jstreamfunction,definedbyEq.(14)

A.V.Kuznetsov,D.A.Nield/InternationalJournalofThermalSciences77(2014)126e129127

vj

vy

vf

vx

_

vj

vx

vf

vy

¼DB

v

2

f

vy

2

þ

_

DT

TN

_

v

2

T

vy

2

:

(17)

Eq.(15)wasderivedbyintegrationwithrespecttoy;theuse

wasalsomadeoftheboundaryconditionsatinfinity.InEq.(15)

n¼m/rfN.

ThelocalRayleighnumberRaxwasdefinedby

Rax¼

ð1_fNÞbgðTw_TNÞx

3

na

;(18)

andthesimilarityvariablewasdefinedby

y

x

Ra

1=4

x

:

(19)

Thesimilarityvariablewaschosenonthebasisofscaleanalysis.

Ourreviewshowsthatmostnanofluidshavelargevaluesforthe

LewisnumberLe.ForthisreasonweconcentrateonthecaseLe>1.

Wealsoassumethatheattransfer,ratherthanmasstransfer,drives

theflow.Intermsofourmodel,thisimpliesthatthebuoyancye

ratioparameterNrdefinedbyEq.(25)belowissmallincomparison

withunity.ThisalsoimpliesthattheLewisnumberLedefinedby

Eq.(28)belowisgreaterthanunity.

Thedimensionlessvariabless,q,andfwereintroducedbythe

followingequations

sðhÞ¼

j

aRa

1=4

x

;qðhÞ¼

T_TN

Tw_TN

;fðhÞ¼

f

fN

:

(20)

WesubstitutedthequantitiesdefinedbyEq.(20)intoEqs.(15)e

(17)andobtainedthefollowingordinarydifferentialequations

s

000

þ

1

4Pr

_

3ss

00

_2s

02

þq_Nrf¼0;(21)

q

00

þ

3

4

sq

0

þNbf

0

q

0

þNtq

02

¼0;(22)

f

00

þ

3

4

Lesf

0

þ

Nt

Nb

q

00

¼0:

(23)

ThefivedimensionlessparametersinEqs.(21)e(23)are

Pr¼

n

a

;(24)

Nr¼

_

rp_rfN

fN

rfNbðTw_TNÞ

;(25)

Nb¼

ðrcÞ

pDBfN

ðrcÞ

fa

;(26)

Nt¼

ðrcÞ

pDT

ðTw_TNÞ

ðrcÞ

faTN

;(27)

Le¼

a

DB

:

(28)

HereNristhebuoyancyratio,NbistheBrownianmotion

parameter,Ntisthethermophoresisparameter,andLetheLewis

number.

WesolvedEqs.(21)e(23)subjecttothefollowingboundary

conditions:

Ath¼0:

s¼0;s

0

¼0;q¼1;Nbf

0

þNtq

0

¼0;(29a,b,c)

Ash/N:

s

0

¼0;q¼0;f¼0:

(30a,b,c)

ForthecasewhenNr,NbandNtareallequaltozero,thereare

justtwoindependentvaluablesinvolvedinEqs.(21)and(22)

(namelysandq).Theboundary-valueproblemforthesetwovariablesreducestotheclassicalPohlhausen-Kuiken-Bejanproblem,

whiletheboundaryvalueproblemforfthenbecomesill-posedand

hasnophysicalsignificance.

WedefinedtheNusseltnumberNuas

Nu¼

q

00

x

kðTw_TNÞ

:

(31)

Hereq

00

isthewallheatflux.ThereducedNusseltnumber

Nu/Rax

1/4

whichwedenotedbyNur,isfoundas_q

0

(0).The

readerwillnotethatthedimensionlessmassfluxrepresented

byaSherwoodnumberShisnowidenticallyzero.

3.Resultsanddiscussion

Asabaselineforcomparison,wefirstpresentinTable1some

resultsforthelimitingcaseofaregularfluid.Wethenpresentthe

resultsofourinvestigationoftheeffectoftheparametersNr,Nb

andNtonNur,forvariousvaluesofPrandLe.

In

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1