最新交联聚酰亚胺膜.docx

上传人:b****0 文档编号:423516 上传时间:2022-10-10 格式:DOCX 页数:11 大小:146.51KB
下载 相关 举报
最新交联聚酰亚胺膜.docx_第1页
第1页 / 共11页
最新交联聚酰亚胺膜.docx_第2页
第2页 / 共11页
最新交联聚酰亚胺膜.docx_第3页
第3页 / 共11页
最新交联聚酰亚胺膜.docx_第4页
第4页 / 共11页
最新交联聚酰亚胺膜.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

最新交联聚酰亚胺膜.docx

《最新交联聚酰亚胺膜.docx》由会员分享,可在线阅读,更多相关《最新交联聚酰亚胺膜.docx(11页珍藏版)》请在冰豆网上搜索。

最新交联聚酰亚胺膜.docx

最新交联聚酰亚胺膜

 

交联聚酰亚胺膜

[54]发明名称

交联聚酰亚胺膜

[57]摘要

本发明提供了改进耐溶剂纳滤中所用的聚酰亚胺膜的性能的方法。

本发明的方法更特别使得能够改进该聚酰亚胺胰对在过滤过程中所应用的条件下会溶解聚酰亚胺的溶剂或溶剂混合物的溶剂稳定性,所述溶剂例如二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAC)、四氢呋喃(THF)、Y-丁内酯(GBL)、二甲亚砜(DMSO)和氯化溶剂。

权利要求书

1.包含聚酰亚胺的超滤或纳滤膜的改性方法,以在保持该膜渗透性的同时提高该膜对有机溶剂的耐受性,所述方法包括使用氨基化合物交联该聚酰亚胺。

2.根据权利要求1的方法,该方法进一步包括对经交联的膜进行溶剂交换程序的步骤。

3.根据权利要求2的方法,其中溶剂交换程序包括将该膜浸渍在异丙醇浴中,然后浸渍在异丙醇一甘油浴中。

4.根据权利要求2或3的方法,该方法进一步包括干燥该膜的步骤。

5.根据权利要求1至4的方法,其中该膜包含具有理解性通用结构的聚酰亚胺:

6.根据权利要求1至4的方法,其中该膜包含具有理解性通用结构的聚酰亚胺:

 

7.根据权利要求1至6的方法,其中交联操作包括将聚酰亚胺膜浸渍在包含选自以下的氨基化合物的溶液中:

环己胺、对二甲苯二胺、l,2-二氨基乙烷、1,6-己二胺、3-氨基丙基甲基二乙氧基硅烷、三(2-氨基乙基)胺、三亚乙基四胺、五亚乙基六胺、聚乙烯亚胺、分子量为50至20,000的主要基于聚环氧乙烷骨架的聚醚二胺、分子量为200至200,000的三甲氧基甲硅烷基丙基取代的聚乙烯胺、分子量为1,000至200,000的聚乙烯胺、含水氢氧化铵和异丁基胺。

8.根据权利要求7的方法,其中该交联包括将该膜浸渍在对二甲苯二胺在甲醇中的1-25%w/v溶液中。

9.根据权利要求8的方法,其中该交联包括将该膜浸渍在对二甲苯二胺在甲醇中的10%w/v溶液中。

10.可通过权利要求1至9的方法获得的膜,其耐受有机溶剂及其混合物。

11.根据权利要求10的膜,其尤其耐受非质子溶剂。

12.根据权利要求10或11的膜,其中所述膜具有200-2000Da的截留分子量和至少1l/m2巴h的渗透率。

13.根据权利要求10至12的膜在涉及有机溶剂的压力驱动液体分离法中的用途。

14.从分子量为200至2000Da的化合物在有机溶剂或溶剂混合物中的溶液中分离所述化合物的方法,所述方法包括使该溶液在压力下与根据权利要求1-9的方法改性的聚酰亚胺膜接触。

15.权利要求9的方法,其中所述有机溶剂是非质子溶剂,或所述有机溶剂混合物包含非质子溶剂。

交联聚酰亚胺膜

技术领域

本发明涉及改进耐溶剂纳滤中所用的聚酰亚胺膜的性能,更特别涉及延伸该聚酰亚胺膜对在过滤过程中所用的条件下会溶解聚酰亚胺的溶剂或溶剂混合物的溶剂稳定性。

背景技术

纳滤是压力驱动的分离法。

其涉及借助通过对该膜进料侧施加压力(气体压力或机械压力)而产生的压力梯度而在膜上分离两种或更多种组分的方法。

该压力驱动的膜法可以根据施加的压力分成4类,其典型值列在表1中(Mulder,1996)。

当具体涉及溶剂应用时,术

语“耐溶剂纳滤(SRNF)"还包括反渗透和超滤的高压端。

表1:

压力驱动的膜法

穿过该膜的体积通量取决于膜上的压力梯度、进料性质以及取决于该膜的液压阻力。

后者取决于膜性质,如该膜的选择性层的孔尺寸和结构、孔隙率和厚度。

溶质被该膜的截留率由不同机理决定,例如组分在液体和膜相之间的分布、固体与液体中的其它组分和与孔壁或聚合物链的相互作用。

通常,液体一膜相互作用、溶质一膜相互作用和溶质一液体相互作用在分离法中起作用。

该膜(在某些溶剂中)的不合意溶胀可能干扰该分离法,这例如可降低选择性并最终导致膜聚合物的溶解。

压力驱动的膜分离法仍主要用在水处理法中,但它们越来越多地用于非水性料流中的分离,例如从溶剂中分离出染料或表面活性剂、聚合物分级、溶解的催化剂与产物和溶剂分离、药物中间体和产物与溶剂分离、甘油三酯和磷脂与油mycella(乳酪)分离、油脱酸、萃

取溶剂的回收、烃和润滑油与溶剂分离、溶剂交换等。

微滤(MF)、超滤(UF)、纳滤(NF)和反渗透(RO)膜经常由在某些条件下在某些溶剂中不稳定的聚合物材料制成。

这在可加工性层面是有利的,其中该聚合物的溶解对例如经由相反转法制备无缺陷膜而言经常是必不可少的。

在实际过滤过程中,膜稳定性的缺乏经常被观察为过度溶胀,或最终甚至被观察为该聚合物完全溶解在构成要处理的进料的有机溶剂中。

因此,膜选择性降低且膜变得不可用。

将聚合物膜改性以改进其在有机溶剂中的耐受性对延伸压力驱动的膜法在非水性料流中的应用而言是非常重要的。

原则上,陶瓷膜在一定pH-范围内或甚至在升高的温度下耐受任何有机溶剂,但它们昂贵且一旦孔尺寸降至较低NF-范围(通常从400Da超)就经常表现出低或甚至无有机物通量。

已经描述了陶瓷膜,涉及亲水性无机膜在孔隙中的疏水化。

二氧化硅/氧化锆膜和y-氧化

铝膜已被研究用于非水性应用。

(Tsuru等人,1998;Tsuru等人,2000;Tsuru等人,2001;Tsuru等人,2006;Verrecht等人,2006)。

已经报道了用甲硅烷基化剂将陶瓷介孔膜进行甲硅烷基化。

已经制成在有机溶剂,如甲苯、己烷、醇等中具有优异适用性的多种聚合物膜。

聚酰亚胺膜已用于芳烃与非芳烃的分离(美国专利6,180,008)、用于润滑油与有机溶剂,如甲苯和己烷的分离(美国专利5,264,166)、用于回收有机溶剂和有价值的组分(Cuperus,2005)等。

已经例如通过使用专门设计的单体单元将聚丙烯腈改性以用在有机溶剂,例如DMF中(Hicke等人,2002)。

耐溶剂纳滤膜中所用的聚合物的其它实例是聚醚酰亚胺、聚酰胺、聚砜、聚(醚醚酮)乙酸纤维素、聚苯并咪唑、聚二甲基硅氧烷等。

但是,一些溶剂类别导致这些聚合物的严重稳定性问题。

特别地,非质子溶剂类,例如二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAC)、四氢呋喃(THF)、Y-丁内酯(GBL)、二甲亚砜(DMSO)和氯化溶剂,仍是有问题的溶剂类别。

高稳定交联弹性体,例如聚二甲基硅氧烷,太疏水以致不能成功用在这些溶剂中。

Linder等人公开了聚合物膜的合成后的处理以使它们不溶于非质子溶剂(例如NMP、DMF等)并在SRNF-范围内可用(Linder,1991)。

他们通过在升高的温度下在含水碱(NaOH)溶液中化学交联来将聚丙烯腈膜改性。

根据它们的化学组成,基于聚酰亚胺的膜易溶解在所选氯化溶剂中。

因此,当浸渍在含这些溶剂的进料中时,聚酰亚胺膜会溶解,因此需要将这类膜改性以避免它们在所述进料中溶解。

聚酰亚胺构成以重复单元内的酰亚胺键为特征的一类聚合物。

有两种一般类型的聚酰亚胺。

一种类型,所谓的线型聚酰亚胺,通过将酰亚胺结合入长链中来制成。

芳族杂环聚酰亚胺是另一常见类型,其中酰亚胺结构中的两个碳原子都属于芳环。

在文献中也已描述了许多

氟化聚合物。

即使在氛体分离中表现得非常好,但由于对渗透的烃的亲和力太低,它们用于在有机溶剂中的SRNF的潜力有限。

即使酰亚胺键是聚酰亚胺的特征,但整个重复单体单元的化学组成决定溶剂稳定性。

在例如市售聚酰亚胺中,以5(6)氨基一1(4’氨基苯基)一1,3,一三甲基茚满(lindane)为化学组成的Matrimid聚酰亚胺(Huntsman)(图1)比衍生自芳族二酸酐和芳族二异氰酸酯的相关LenzingP84polyimid(Degussa)(图2)更容易溶解得多。

对非膜用途而言,在文献中已经描述了用于聚酰亚胺交联的多种方法。

不同的作者提出例如通过在聚合物合成过程中已经引入可交联基团来将聚酰亚胺单体化学改性以便进一步交联。

(JP2001323067、W02003053548A1;(Park等人,2006;SeungSanHan等人,2007)。

HiroshiItatani(W02004087793A1)研究了由交联聚酰胺制备交联聚酰亚胺。

这些方法通常相当复杂并且需要大量的有机合成工作。

聚酰亚胺的交联可以在热空气或周围环境中进行(JP09324049;Liu等人,1999)或通过紫外线照射进行(Liu等人,1999)。

美国专利

No.3,533,997公开了结合有侧挂羧酸官能团的芳族聚酰亚胺和这类材料通过该侧挂羧酸官能团和二一至四一胺基团的相互作用而交联。

美国专利No.4,734,464公开了包含含硅氧烷的聚酰亚胺和含至少两个反应性基团(例如氨基)的芳族化合物的耐溶剂组合物,将其加热至至少150℃。

EP203,770和EP244,967公开了通过芳族双酰亚胺化合物和胺官能团之间的高温相互作用制备聚酰胺。

更具体对膜应用而言,已经采用不同的聚酰亚胺交联法,但仅旨在提高的膜用于气体分离、用于全蒸发或用于电子器件制造的性能。

聚酰亚胺膜与伯或仲单一、二一、三一或多胺,例如乙二胺和对二甲苯二胺的化学反应是这样的所述交联法(美国专利4,981,497;WO2006009520A1;Okamoto等人,1999;Shao等人,2005;Liu等人,2001;Qiao和Chung,2006)。

美国专利No.4.981,497公开了由通过与伯或仲单一、二一、三一或多胺的化学反应交联的芳族聚酰亚胺构成的膜,旨在改进的气体分离特性和改进的耐环境性。

对压力驱动法,例如SRNF而言,除NITTO(日本)公司出售的在液体中具有一定耐溶剂性的交联膜外,尚未公开交联聚酰亚胺膜。

但是,这些膜限于UF范围,并在运行中具有低效率。

以在保持SRNF范围内的良好性能的同时实现化学稳定性的方式(这需要致密膜结构)改性预成型膜确实是非显而易见的。

已知的是,许多化学(交联反应等)或物理(等离子体处理等)处理破坏聚合物链(参见实施例6),因此破坏膜的机械稳定性和/或提高膜的孔尺寸,或改性膜表面以致对渗透性化合物的亲和力和因此它们的渗透显著降低。

(美国专利4,981,497;Aerts等人,2006)。

发明内容

本发明提供了超滤或纳滤聚酰亚胺膜的改性方法以在保持该膜的渗透性的同时提高其耐溶剂性。

附图说明

图1:

商业聚酰亚胺Matrimid~(Huntsman)的化学结构

图2:

以商品名Lenzing⑧P84可购得的聚酰亚胺的通用化学结构

在第一目的中,本发明提供了在其选择性层中包含聚酰亚胺的超滤或纳滤膜的改性方法,以在保持其渗透性的同时提高该膜对有机溶剂的耐受性,所述方法包括使用氨基化合物交联该聚酰亚胺。

优选在此交联步骤后,对该交联膜进行溶剂交换程序,在此之后任选将该膜干燥。

为了交联聚酰亚胺膜,优选使用选自以下的氨基化合物:

环己胺、对二甲苯二胺、1,2一二氨基乙烷、1,6-己二胺、3-氨基丙基甲基二乙氧基硅烷、三(2-氨基乙基)胺、三亚乙基四胺、五亚乙基六胺、聚乙烯亚胺、分子量为50至20,000的主要基于聚环氧乙烷骨架的聚醚二胺、分子量为200至200,000的三甲氧基甲硅烷基丙基取代的聚乙烯胺、分子量为1,000至200,000的聚乙烯胺、含水氢氧化铵和异丁基胺。

优选地,通过完全或部分将该膜在包含合适的胺化合物的溶液中浸渍适当的时间,获得聚酰亚胺膜的交联。

本领域技术人员会认识到,氨基-化合物与含酰亚胺的材料之间的反应速率将很大程庋上地随它们的化学特性和工艺条件而变。

根据聚酰亚胺和用于交联的氨基化合物两者的化学组成,长反应时间或甚至在升高的温度下固化可能是必需的。

在本发明的实施方案中,将胺化合物溶解在甲醇中,但可

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1