第二章晶体缺陷.docx

上传人:b****6 文档编号:4165113 上传时间:2022-11-28 格式:DOCX 页数:10 大小:368.32KB
下载 相关 举报
第二章晶体缺陷.docx_第1页
第1页 / 共10页
第二章晶体缺陷.docx_第2页
第2页 / 共10页
第二章晶体缺陷.docx_第3页
第3页 / 共10页
第二章晶体缺陷.docx_第4页
第4页 / 共10页
第二章晶体缺陷.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

第二章晶体缺陷.docx

《第二章晶体缺陷.docx》由会员分享,可在线阅读,更多相关《第二章晶体缺陷.docx(10页珍藏版)》请在冰豆网上搜索。

第二章晶体缺陷.docx

第二章晶体缺陷

第二章晶体缺陷

固体在热力学上最稳定的状态是处于0K温度时的完整晶体状态,此时,其内部能量最低。

晶体中的原子按理想的晶格点阵排列。

实际的真实晶体中,在高于0K的任何温度下,都或多或少的存在着对理想晶体结构的偏离,即存在着结构缺陷。

结构缺陷的存在及其运动规律,对固体的一系列性质和性能有着密切的关系,尤其是新型陶瓷性能的调节和应用功能的开发常常取决于对晶体缺陷类型和缺陷浓度的控制,因此掌握晶体缺陷的知识是掌握材料科学的基础。

晶体缺陷从形成的几何形态上可分为点缺陷、线缺陷和面缺陷三类。

其中点缺陷按形成原因又可分为热缺陷、组成缺陷(固溶体)和非化学计量化合物缺陷,点缺陷对材料的动力性质具有重要影响。

本章对点缺陷进行重点研究,对线缺陷的类型和基本运动规律进行简要的介绍,面缺陷的内容放在表面和界面一章中讲解。

第一节热缺陷

一.热缺陷定义

当晶体的温度高于绝对0K时,由于晶格内原子热振动,使一部分能量较大的原子离开平衡位置造成的缺陷。

由于质点热运动产生的缺陷称为热缺陷。

二.热缺陷产生的原因

当温度高于绝对温度时,晶格中原子热振动,温度是原子平均动能的度量,部分原子的能量较高,大于周围质点的约束力时就可离开其平衡位置,形成缺陷。

三.热缺陷的基本类型

1.肖特基缺陷

如果表面正常格点上的原子,热起伏过程中获得能量离开平衡位置但并未离开晶体,仅迁移到晶体表面外新表面的一个位置上,在原表面格点上留下空位。

原子的迁移相当于空位的反向迁移,表面的空位移至晶体的内部。

显然,在产生肖特基缺陷晶体会增大体积。

为了维持晶体的电中性,正、负离子空位同时按化学式关系成比例产生。

2.弗伦克尔缺陷

晶格热振动时,一些原子离开平衡位置后挤到晶格的间隙位置中形成间隙原子,而原来的结点形成空位。

此过程中,间隙原子与空位成对产生,晶体体积不发生变化。

四.缺陷化学

1.缺陷表示方法

在克劳格.明克符号系统中,用一个主要符号来表明缺陷的种类,用一个下标来表示缺陷的位置,缺陷的有效电荷在符号的上标表示,如“·”表示正电,“’”表示负电,“×”表示中性。

1)自由电子-e’;

2) 电子空穴-h.;

3)正常质点:

单质M,正常原子:

4)空位:

单质M中,VM:

5)间隙质点:

单质M,Mi

6)杂质离子置换晶格中本身粒子:

如Mg

7)缔合中心:

当缺陷相邻时,缺陷会缔合。

由于断键数量的减少,系统能量会降低,稳定性增加。

2.肖特基缺陷形成反应

(1)单质产生肖特基缺陷

缺陷反应式:

MM

求肖特基缺陷平衡浓度:

KS=[VM]/[0]=[VM]设[0]=1

其中:

-产生1mol肖特基缺陷过程的自由焓变化;

式中忽略了体积功和熵变。

Us—形成1mol肖特基缺陷所需的能量。

R=N0·K

当上式中的R由K来代替时,Us表示形成一个缺陷所需能量。

2)离子晶体产生肖特基缺陷

以MgO为例

缺陷形成反应式:

求肖特基缺陷平衡浓度:

设[0]=1

△GS—形成1mol肖特基缺陷体系自由能变化

US—形成1mol(或1个)肖特基缺陷所需能量

上式中忽略了体积功和熵变。

(2)弗伦克尔缺陷形成反应

(1)单质产生弗伦克尔缺陷

△Gf—生成1mol弗伦克尔缺陷体系自由焓变化。

Uf—生成1mol弗伦克尔缺陷所需能量。

2)离子晶体产生弗伦克尔缺陷

如AgBr:

缺陷反应

在热缺陷产生过程中:

G=H-TS,系统的混乱度增加,S升高,内能增加,H升高。

所以,H、S变化相反,可能是G达到最小,因此,热缺陷在热力学上是稳定的。

第二节固溶体

一.固溶体概念

含有外来杂质原子或离子的晶体称为固溶体。

 

化学组成

相数

结构

化合物

符合定组成定律

单相

具有本身固有结构

混合物

可变

多相

各组分保持自身结构

固溶体

可变

单相

保持主晶相晶体结构

二.类型

1.按固溶度分:

(1)连续固溶体:

一种物质能以任意比例固溶到另一种晶体中。

需满足条件:

晶体结构因素-结构类型完全相同;

尺寸因素-相应的置换离子半径差值:

(R1-R2)/R1小于15%,R1大于R2;但对于复杂的大晶胞,当半径差比大于15%时,也可能生成固溶体;

电价因素-相应置换离子电价必须相同;

电负性因素-电负性相近,利于固溶体生成;反之,倾向于形成化合物。

(2)有限固溶体:

一种物质在另一种晶体中的溶解是有限的,当超过溶解度时,不再溶解。

形成有限固溶体,晶体结构类型类型不一定相同;离子半径尺寸差别大于15%,差值越大,固溶度越低;离子电价可以不等,但不等价置换只能生成有限固溶体。

2.按形成固溶体的方式分:

(1)置换型固溶体:

连续固溶体全部是置换型固溶体;有限固溶体中离子或离子组相应置换的数目相等的也属于置换型固溶体。

(2)间隙型固溶体:

不等价置换,且间隙位置能容纳外来离子,否则能量升高,结构不稳定。

1)低价阳离子置换高价阳离子,阳离子间隙。

化学式:

反应式检验方法:

质量平衡;电荷平衡;位置平衡。

2)高价阳离子置换低价阳离子,阴离子间隙。

化学式:

(3)缺位形固溶体:

低价阳离子置换高价阳离子,形成阴离子空位或阳离子间隙;

高价阳离子置换低价阳离子,形成阳离子空位或阴离子间隙。

三、杂质缺陷的产生对热缺陷浓度的影响

对于纯LiCl:

(忽略体积功和熵变)

含MgCl2的LiCl中:

在一定温度下,肖特基缺陷和弗伦克耳缺陷形成反应的平衡常数总是保持不变的。

因此,杂质缺陷的产生,会降低热缺陷浓度的影响。

四.判断固溶体缺陷种类的方法

固溶体类型主要通过测定晶胞参数并计算出固溶体的密度,和由实验精确测定的密度数据对比来判断。

不同类型的固溶体,密度值有着很大不同。

如氧化钙进入到氧化锆中可形成阴离子空位和阳离子填隙两种固溶体,在1600度,固溶体具有萤石结构,实验测定当融入0.15分子氧化钙时,晶胞参数a=0.513nm,该固溶体密度为D=5.447g/㎝3。

根据固溶体结构和给定的晶胞参数等已知条件,可计算出形成空位型固溶体的理论密度为5.564g/㎝3,这与实验测定数值相近,因此可确定该固溶体的类型为缺位形固溶体。

五.形成固溶体的意义

对于很多材料,尤其是功能材料往往通过形成固溶体来调节材料的性能或产生新的应用功能。

1.活化晶格。

杂质进入晶格形成晶格缺陷,造成周期势场畸变,缺陷周围质点的能量升高,可动性增加,有利于质点迁移。

 

2.抑制多晶体转变,稳定晶型。

ZrO2有三种晶型。

低温为单斜晶系,密度5.65g/cm3。

高温为四方晶系,密度6.10g/cm3。

更高温度下转变为立方晶系,密度6.27g/cm3。

其转化关系为:

单斜ZrO2

四方ZrO2

立方ZrO2

液体

5.65 7%~9% 6.10g/cm3

收缩

膨胀

         

单斜晶与四方晶之间的转变伴随有7%~9%的体积变化。

加热时,单斜晶转变为四方晶,体积收缩;冷却时,四方晶转变为单斜晶,体积膨胀。

由于热应力导致材料破坏,不能实用。

形成固溶体,立方晶可保存至室温,避免四方晶转变为单斜晶。

氧化锆陶瓷是优良的结构陶瓷

a)硬度高,莫氏硬度6.5。

因此可制成冷成形工具、整形模、拉丝模、切削刀具、温挤模具、鱼刀、剪刀、高尔夫球棍头等。

b)强度高、韧性好、常温抗压强度可达2100MPa,1000ºC时为1190MPa。

最好的韧化陶瓷常温抗弯强度可达2000MPa,KIC可达9MPam1/2以上。

因此可用来制造发动机构件,如推杆、连杆、轴承、气缸内衬、活塞帽等。

c)抗腐蚀。

ZrO2在氧化气氛中十分稳定。

因此可以用作特种耐火材料、浇铸口,用作熔炼铂、钯、铑等金属的坩埚。

氧化锆与熔融铁或钢不润湿,因此可以作盛钢水桶、流钢水槽的内衬,在连续铸钢中作注口砖。

3.可以获得新型材料和调节性能。

如锆钛酸铅和Sialon等材料都是固溶体。

例如:

通过形成固溶体,可调节氧化锆的电性能,由绝缘体变为导电体。

通常Y2O3ZrO2,产生氧空位,形成O2-导电机制。

可制作燃料电池--能量转化效率高,无污染;

可作为氧传感器--测定钢水的温度。

第三节非化学计量化合物

指同一元素的高价氧化物和低价氧化物形成的固溶体。

分为四种类型:

一、阴离子过剩,导致阳离子空位:

如FeO在氧化气氛下,原子氧进入晶格中离子化,Fe由2价变为3价,形成Fe2+空位。

缺陷的浓度由气氛决定,氧分压越高,缺陷越高;

二.阳离子过剩,导致阴离子空位

对于TiO2,在还原气氛下,生成氧空位,

根据质量作用定律:

三.阳离子过剩而填隙

如ZnO在Zn蒸汽中650度加热,Zn+进入晶格位置:

四.阴离子过剩而填隙

对于UO2,在氧化气氛下:

在金属离子具有可变价的前提下,改变气氛可形成不同的非化学计量化合物。

第四节位错

一.位错的基本类型

1.刃型位错

指伯格斯矢量与位错线垂直的位错,刃型位错分为正、负刃型位错。

2.螺旋位错

指位错线与伯格斯矢量相互平行,螺旋位错分左、右.螺旋位错。

二.刃型位错的运动

1.刃型位错的滑移

2.刃型位错的攀移

指多余半平面的伸长、缩短,发生的条件是在高温条件下。

向上攀移,可作为空位阱;向下攀移,可作为空位源。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 政史地

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1