高层建筑地基处理与基础选型.docx

上传人:b****6 文档编号:4133760 上传时间:2022-11-28 格式:DOCX 页数:12 大小:29.37KB
下载 相关 举报
高层建筑地基处理与基础选型.docx_第1页
第1页 / 共12页
高层建筑地基处理与基础选型.docx_第2页
第2页 / 共12页
高层建筑地基处理与基础选型.docx_第3页
第3页 / 共12页
高层建筑地基处理与基础选型.docx_第4页
第4页 / 共12页
高层建筑地基处理与基础选型.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

高层建筑地基处理与基础选型.docx

《高层建筑地基处理与基础选型.docx》由会员分享,可在线阅读,更多相关《高层建筑地基处理与基础选型.docx(12页珍藏版)》请在冰豆网上搜索。

高层建筑地基处理与基础选型.docx

高层建筑地基处理与基础选型

 

高层建筑地基处理与基础选型

 

 

高层建筑地基处理与基础选型1

一、引言一、引言3

2高层建筑基础选型应考虑的因素5

 

摘要:

本文就生活中常见的高层建筑地基处理和基础选型作简要的分析,并对常用的基础类型提出基础设计中的注意事项。

关键字:

地基处理基础选型桩基设计

一、引言

基础是建筑物和地基之间的连接体。

基础把建筑物竖向体系传来的荷载传给地基。

从平面上可见,竖向结构体系将荷载集中于点,或分布成线形,但作为最终支承机构的地基,提供的是一种分布的承载能力。

如果地基的承载能力足够,则基础的分布方式可与竖向结构的分布方式相同。

但有时由于土或荷载的条件,需要采用满铺的伐形基础。

伐形基础有扩大地基接触面的优点,但与独立基础相比,它的造价通常要高的多,因此只在必要时才使用。

不论哪一种情况,基础的概念都是把集中荷载分散到地基上,使荷载不超过地基的长期承载力。

因此,分散的程度与地基的承载能力成反比。

有时,柱子可以直接支承在下面的方形基础上,墙则支承在沿墙长度方向布置的条形基础上。

当建筑物只有几层高时,只需要把墙下的条形基础和柱下的方形基础结合使用,就常常足以把荷载传给地基。

这些单独基础可用基础梁连接起来,以加强基础抵抗地震的能力。

只是在地基非常软弱,或者建筑物比较高的情况下,才需要采用伐形基础。

多数建筑物的竖向结构,墙、柱都可以用各自的基础分别支承在地基上。

中等地基条件可以要求增设拱式或预应力梁式的基础连接构件,这样可以比独立基础更均匀地分布荷载。

如果地基承载力不足,就可以判定为软弱地基,就必须采取措施对软弱地基进行处理。

软弱地基系指主要由淤泥、淤泥质土、冲填土、杂填土或其他高压缩性土层构成的地基。

在建筑地基的局部范围内有高压缩性土层时,应按局部软弱土层考虑。

勘察时,应查明软弱土层的均匀性、组成、分布范围和土质情况,根据拟采用的地基处理方法提供相应参数。

冲填土尚应了解排水固结条件。

杂填土应查明堆积历史,明确自重下稳定性、湿陷性等基本因素。

在初步计算时,最好先计算房屋结构的大致重量,并假设它均匀的分布在全部面积上,从而等到平均的荷载值,可以和地基本身的承载力相比较。

如果地基的容许承载力大于4倍的平均荷载值,则用单独基础可能比伐形基础更经济;如果地基的容许承载力小于2倍的平均荷载值,那么建造满铺在全部面积上的伐形基础可能更经济。

如果介于二者之间,则用桩基或沉井基础。

二、地基的处理方法

地基处理的好坏将直接关系到基础的选型和造价。

利用软弱土层作为持力层时,可按下列规定执行:

1)淤泥和淤泥质土,宜利用其上覆较好土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施;2)冲填土、建筑垃圾和性能稳定的工业废料,当均匀性和密实度较好时,均可利用作为持力层;3)对于有机质含量较多的生活垃圾和对基础有侵蚀性的工业废料等杂填土,未经处理不宜作为持力层。

局部软弱土层以及暗塘、暗沟等,可采用基础梁、换土、桩基或其他方法处理。

在选择地基处理方法时,应综合考虑场地工程地质和水文地质条件、建筑物对地基要求、建筑结构类型和基础型式、周围环境条件、材料供应情况、施工条件等因素,经过技术经济指标比较分析后择优采用。

地基处理设计时,应考虑上部结构,基础和地基的共同作用,必要时应采取有效措施,加强上部结构的刚度和强度,以增加建筑物对地基不均匀变形的适应能力。

对已选定的地基处理方法,宜按建筑物地基基础设计等级,选择代表性场地进行相应的现场试验,并进行必要的测试,以检验设计参数和加固效果,同时为施工质量检验提供相关依据。

经处理后的地基,当按地基承载力确定基础底面积及埋深而需要对地基承载力特征值进行修正时,基础宽度的地基承载力修正系数取零,基础埋深的地基承载力修正系数取1.0;在受力范围内仍存在软弱下卧层时,应验算软弱下卧层的地基承载力。

对受较大水平荷载或建造在斜坡上的建筑物或构筑物,以及钢油罐、堆料场等,地基处理后应进行地基稳定性计算。

结构工程师需根据有关规范分别提供用于地基承载力验算和地基变形验算的荷载值;根据建筑物荷载差异大小、建筑物之间的联系方法、施工顺序等,按有关规范和地区经验对地基变形允许值合理提出设计要求。

地基处理后,建筑物的地基变形应满足现行有关规范的要求,并在施工期间进行沉降观测,必要时尚应在使用期间继续观测,用以评价地基加固效果和作为使用维护依据。

复合地基设计应满足建筑物承载力和变形要求。

地基土为欠固结土、膨胀土、湿陷性黄土、可液化土等特殊土时,设计要综合考虑土体的特殊性质,选用适当的增强体和施工工艺。

复合地基承载力特征值应通过现场复合地基载荷试验确定,或采用增强体的载荷试验结果和其周边土的承载力特征值结合经验确定。

常用的地基处理方法有:

换填垫层法、强夯法、砂石桩法、振冲法、水泥土搅拌法、高压喷射注浆法、预压法、夯实水泥土桩法、水泥粉煤灰碎石桩法、石灰桩法、灰土挤密桩法和土挤密桩法、柱锤冲扩桩法、单液硅化法和碱液法等。

1换填垫层法适用于浅层软弱地基及不均匀地基的处理。

其主要作用是提高地基承载力,减少沉降量,加速软弱土层的排水固结,防止冻胀和消除膨胀土的胀缩。

2强夯法适用于处理碎石土、砂土、低饱和度的粉土与粘性土、湿陷性黄土、杂填土和素填土等地基。

强夯置换法适用于高饱和度的粉土,软-流塑的粘性土等地基上对变形控制不严的工程,在设计前必须通过现场试验确定其适用性和处理效果。

强夯法和强夯置换法主要用来提高土的强度,减少压缩性,改善土体抵抗振动液化能力和消除土的湿陷性。

对饱和粘性土宜结合堆载预压法和垂直排水法使用。

3砂石桩法适用于挤密松散砂土、粉土、粘性土、素填土、杂填土等地基,提高地基的承载力和降低压缩性,也可用于处理可液化地基。

对饱和粘土地基上变形控制不严的工程也可采用砂石桩置换处理,使砂石桩与软粘土构成复合地基,加速软土的排水固结,提高地基承载力。

4振冲法分加填料和不加填料两种。

加填料的通常称为振冲碎石桩法。

振冲法适用于处理砂土、粉土、粉质粘土、素填土和杂填土等地基。

对于处理不排水抗剪强度不小于20kPa的粘性土和饱和黄土地基,应在施工前通过现场试验确定其适用性。

不加填料振冲加密适用于处理粘粒含量不大于10%的中、粗砂地基。

振冲碎石桩主要用来提高地基承载力,减少地基沉降量,还可用来提高土坡的抗滑稳定性或提高土体的抗剪强度。

5水泥土搅拌法分为浆液深层搅拌法(简称湿法)和粉体喷搅法(简称干法)。

水泥土搅拌法适用于处理正常固结的淤泥与淤泥质土、粘性土、粉土、饱和黄土、素填土以及无流动地下水的饱和松散砂土等地基。

不宜用于处理泥炭土、塑性指数大于25的粘土、地下水具有腐蚀性以及有机质含量较高的地基。

若需采用时必须通过试验确定其适用性。

当地基的天然含水量小于30%(黄土含水量小于25%)、大于70%或地下水的pH值小于4时不宜采用于法。

连续搭接的水泥搅拌桩可作为基坑的止水帷幕,受其搅拌能力的限制,该法在地基承载力大于140kPa的粘性土和粉土地基中的应用有一定难度。

6高压喷射注浆法适用于处理淤泥、淤泥质土、粘性土、粉土、砂土、人工填土和碎石土地基。

当地基中含有较多的大粒径块石、大量植物根茎或较高的有机质时,应根据现场试验结果确定其适用性。

对地下水流速度过大、喷射浆液无法在注浆套管周围凝固等情况不宜采用。

高压旋喷桩的处理深度较大,除地基加固外,也可作为深基坑或大坝的止水帷幕,目前最大处理深度已超过30m。

7预压法适用于处理淤泥、淤泥质土、冲填土等饱和粘性土地基。

按预压方法分为堆载预压法及真空预压法。

堆载预压分塑料排水带或砂井地基堆载预压和天然地基堆载预压。

当软土层厚度小于4m时,可采用天然地基堆载预压法处理,当软土层厚度超过4m时,应采用塑料排水带、砂井等竖向排水预压法处理。

对真空预压工程,必须在地基内设置排水竖井。

预压法主要用来解决地基的沉降及稳定问题。

8夯实水泥土桩法适用于处理地下水位以上的粉土、素填土、杂填土、粘性土等地基。

该法施工周期短、造价低、施工文明、造价容易控制,目前在北京、河北等地的旧城区危改小区工程中得到不少成功的应用。

9水泥粉煤灰碎石桩(CFG桩)法适用于处理粘性土、粉土、砂土和已自重固结的素填土等地基。

对淤泥质土应根据地区经验或现场试验确定其适用性。

基础和桩顶之间需设置一定厚度的褥垫层,保证桩、土共同承担荷载形成复合地基。

该法适用于条基、独立基础、箱基、筏基,可用来提高地基承载力和减少变形。

对可液化地基,可采用碎石桩和水泥粉煤灰碎石桩多桩型复合地基,达到消除地基土的液化和提高承载力的目的。

10石灰桩法适用于处理饱和粘性土、淤泥、淤泥质土、杂填土和素填土等地基。

用于地下水位以上的土层时,可采取减少生石灰用量和增加掺合料含水量的办法提高桩身强度。

该法不适用于地下水下的砂类土。

11灰土挤密桩法和土挤密桩法适用于处理地下水位以上的湿陷性黄土、素填土和杂填土等地基,可处理的深度为5~15m。

当用来消除地基土的湿陷性时,宜采用土挤密桩法;当用来提高地基土的承载力或增强其水稳定性时,宜采用灰土挤密桩法;当地基土的含水量大于24%、饱和度大于65%时,不宜采用这种方法。

灰土挤密桩法和土挤密桩法在消除土的湿陷性和减少渗透性方面效果基本相同,土挤密桩法地基的承载力和水稳定性不及灰土挤密桩法。

12柱锤冲扩桩法适用于处理杂填土、粉土、粘性土、素填土和黄土等地基,对地下水位以下的饱和松软土层,应通过现场试验确定其适用性。

地基处理深度不宜超过6m。

13单液硅化法和碱液法适用于处理地下水位以上渗透系数为0.1~2m/d的湿陷性黄土等地基。

在自重湿陷性黄土场地,对Ⅱ级湿陷性地基,应通过试验确定碱液法的适用性。

14在确定地基处理方案时,宜选取不同的多种方法进行比选。

对复合地基而言,方案选择是针对不同土性、设计要求的承载力提高幅质、选取适宜的成桩工艺和增强体材料。

三、高层建筑基础选型

房屋基础设计应根据工程地质和水文地质条件、建筑体型与功能要求、荷载大小和分布情况、相邻建筑基础情况、施工条件和材料供应以及地区抗震烈度等综合考虑,选择经济合理的基础型式。

高层建筑基础承担着将高层建筑上部结构的荷载传递给地基的重要作用,在设计时,应将高层建筑上部结构、基础与地基协同考虑。

在地震区,凡是地基基础好的,建筑结构所受到的破坏就轻,危害就小,否则就破坏严重。

在工程质量事故中,如果基础工程出现质量问题,补救起来相当困难,还会给工程造价和工期带来较大的影响。

所以,在进行地基基础设计时,除了保证基础本身应具有足够的强度和刚度外,还应考虑地基的强度、稳定性及变形的要求,为使基础设计更合理,应综合考虑上部结构、基础和地基的共同作用。

高层建筑基础工程的重要性,还表现在基础工程在高层建筑的工程造价中占有较大的比重。

基础工程所耗费的钢材、水泥用量多,施工难度大,一般情况下基础工程造价占土建工程总造价的20%左右,工期占土建工程的20-30%,当地质条件复杂时,其造价和工期所占的比重还会增加。

因此,选择合理的基础形式与计算方法,是保证建筑结构安全,降低工程造价的一个有效措施。

高层建筑基础的重要性,还表现在基础形式的多样性和影响因素的复杂性。

在一些地质条件差的地区,基础的设计与施工涉及面广,它不仅与上部结构和基础本身有关,还与地基土的性质、水文条件、周围环境等因素相关。

基础工程在雨季施工时,也会给施工增加很多困难,还会造成一些局部的返工,土建工程拖延工期往往就和基础工程进度有关。

因此,选择合理的基础形式对缩短施工工期也是具有重要意义的。

1高层建筑基础选型的主要依据

在基础工程设计中,根据各地区不同的地质条件,选择合理的基础型式,是个关键问题。

一般情况下应考虑以下条件:

1.1高层建筑基础首先应满足基础本身的强度要求,上部荷载分布应尽量均匀;

1.2基础应支承在较坚固或较均匀的地基上,应考虑持力层及其下卧层的整体稳定,同一栋建筑不宜采用多种不同类型的基础型式;

1.3高层建筑基础设计,应满足建筑物使用上的要求,例如人防要求、设置地下车库、地下酒吧、地下商场、地下餐厅等要求。

1.4高层建筑基础设计,应满足构造的要求,如高层建筑箱基的埋深、高度,基底平面形心与结构竖向静荷载重心相重合,对偏心距的要求、沉降控制等;

1.5根据上部结构的不同结构形式(框架、框剪及剪力墙结构)选配合理的基础型式;

1.6高层建筑基础.一般埋置较深,因此,应考虑深基坑开挖及地下水抽排对周围建筑物的影响,以及地下水造成施工难度的增加和对工程质量的影响。

2高层建筑基础选型时应考虑的因素

高层建筑基础设计比一般建筑基础要更复杂,总的来说,它具有荷载大、埋置深及要求严的特点,在选择基础型式时与建筑物的使用性质、上部结构类型、地质情况、抗震性能、对周围建筑物的影响及施工条件等有密切的关系。

在一般情况下,在基础选型与设计时应考虑以下因素:

2.1当上部结构为框架结构、无地下室、地基较好、荷载较小、柱网分布较均匀时,可采用柱下独立基础。

在抗震设防区,其纵横方向应设连系梁,连系梁可按柱垂直荷载的10%引起的拉力和压力分别验算;

2.2当上部结构为框架或剪力墙结构、无地下室、地基较差、荷载较大时,为了增加基础的整体性,减少不均匀沉降,可选用十字交又钢筋砼条形基础或桩基,如仍不能满足要求,又不采用桩基或其他人工地基时,可以选用筏基;

2.3当上部结构为框架或剪力墙结构、有地下室、上部结构对不均匀沉降限制较严、防水要求较高时,可选用箱基;

2.4当上部结构为框一剪结构、无地下室、地基条件较好时,可采用十字交叉钢筋砼条形基础或筏基;

2.5当上部结构为框一剪结构、有地下室、无特殊防水要求、柱网、荷载及开间分布比较均匀、地基较好时,可选用十字交叉刚性墙基础;

2.6筏基上柱荷载较小或中等、柱距较小且等距的情况下宜采用无梁筏板基础,当柱荷载相差大且柱距又较大时,宜采用梁板式筏基;

2.7当地基较差或很差时,采取上述各类型基础仍不能满足设计时,可选用桩基或其他有效的人工地基;

2.8高层建筑如遇下列情况,与深基础或其它人工地基相比较经济,且施工条件又可能时,可采用桩基;

1)地基软弱,作为天然地基,其承载力或沉降量不能满足现行规范要求时;

2)相邻建筑物之间相互影响,地基将形成过大的不均匀沉降时;

3)对沉降有特殊要求时;

4)限于现场既有建筑不允许开挖,又无其他施工手段时;

5)土层变化较大、厚度不均匀或下卧基岩面起伏相差较大而将引起过大的不均匀沉降时;

6)采用深埋天然地基,在经济上、施工条件上进行比较又不经济时。

2.9其它要求

砌体结构优先采用刚性条形基础,如灰土条形基础、Cl5素混凝土条形基础、毛石混凝土条形基础和四合土条形基础等,当基础宽度大于2.5m时,可采用钢筋混凝土扩展基础即柔性基础。

多层内框架结构,如地基土较差时,中柱宜选用柱下钢筋混凝土条形基础,中柱宜用钢筋混凝土柱。

框架结构、无地下室、地基较好、荷载较小可采用单独柱基,在抗震设防区可按《建筑抗震设计规范》第6.1.1l条设柱基拉梁。

无地下室、地基较差、荷载较大为增强整体性,减少不均匀沉降,可采用十字交叉梁条形基础。

如采用上述基础不能满足地基基础强度和变形要求,又不宜采用桩基或人工地基时,可采用筏板基础(有梁或无梁)。

框架结构、有地下室、上部结构对不均匀沉降要求严、防水要求高、柱网较均匀,可采用箱形基础;柱网不均匀时,可采用筏板基础。

有地下室,无防水要求,柱网、荷载较均匀、地基较好,可采用独立柱基,抗震设防区加柱基拉梁。

或采用钢筋混凝土交叉条形基础或筏板基础。

筏板基础上的柱荷载不大、柱网较小且均匀,可采用板式筏形基础。

当柱荷载不同、柱距较大时,宜采用梁板式筏基。

无论采用何种基础都要处理好基础底板与地下室外墙的连结节点。

框剪结构无地下室、地基较好、荷载较均匀,可选用单独柱基,墙下条基,抗震设防地区柱基下设拉梁并与墙下条基连结在一起。

无地下室,地基较差,荷载较大,柱下可选用交叉条形基础并与墙下条基连结在一起,以加强整体性,如还不能满足地基承载力或变形要求,可采用筏板基础。

剪力墙结构无地下室或有地下室,无防水要求,地基较好,宜选用交叉条形基础。

当有防水要求时,可选用筏板基础或箱形基础。

高层建筑一般都设有地下室,可采用筏板基础;如地下室设置有均匀的钢筋混凝土隔墙时,采用箱形基础。

当地基较差,为满足地基强度和沉降要求,可采用桩基或人工处理地基。

多栋高楼与裙房在地基较好(如卵石层等)、沉降差较小、基础底标高相等时基础可不分缝(沉降缝)。

当地基一般,通过计算或采取措施(如高层设混凝土桩等)控制高层和裙房间的沉降差,则高层和裙房基础也可不设缝,建在同一笺基上。

施工时可设后浇带以调整高层与裙房的初期沉降差。

当高层与裙房或地下车库基础为整块筏板钢筋混凝土基础时,在高层基础附近的裙房或地下车库基础内设后浇带,以调整地基的初期不均匀沉降和混凝土初期收缩。

3岩土工程勘察在高层建筑基础选型与设计中的作用与要求

岩土工程地质条件是隐蔽、复杂和可变的,这种可变性既来自天然条件变化的影响、也来自人类活动的影响。

可变的岩土特性和复杂的工程建设相互作用,可能引起各种后果。

而设计与施工单位主要着眼于基础和上部结构的设计与施工,勘察单位则着重于了解和反映岩体和土体现有的特性,这就是多年来地基处理和基础工程浪费大而有时还难免出事故的根本原因。

所以,每一项岩土工程任务,均带有相当程度的研究性质,搞得好可以给设计提供可靠依据、确保工程质量、缩短工期、节约建设资金,搞不好也可能浪费大量资金,甚至还可能导致工程事故,造成生命财产严重损失和生态环境的破坏。

虽然建设场地的地质条件在多数情况下是隐蔽的,但目前的工程勘察和技术手段,一般还只能做到相对的准确。

例如,规范规定勘察钻孔的最小间距,地质剖面图上两钻孔之间的地层实际上是靠推断勾绘的,埋藏在土层以下的石灰岩层面起伏变化是无法绘出其真实情况的;岩石风化带的厚度也很难确定;卵砾石层密实程度和所含的砂与粘性土也是变化很大的。

象将这样相对准确的地质资料提供给设计人员,设计人员也只能做出相对准确的地基处理与基础设计,在施工过程中不可避免的要根据地质条件的变化而修改设计。

如何使工程勘察更加准确地反映建设场地的工程地质条件,使勘察成果能给基础设计提供更可靠的计算参数和设计依据,那么在工程地质勘察时,应结合当地工程实践经验和建筑拟采用的基础型式,有针对性地提供相关资料。

3.1当考虑采用天然地基时应查明建筑物荷载影响范围内地基土的物理力学性质、土层分布、深度、厚度及均匀性,以及有无不良工程地质现象,如古河道、古池塘、坑道、土洞等,对地基的稳定性及承载力、变形指标等作出评价。

对岩石残积土地区,还应划分出残积土中由岩脉分化成的相对软弱层。

3.2当考虑采用沉管灌注桩及预制桩时,应查明在桩基影响范围内各土层岩性、分布、深度、厚度,应提供标准贯入试验击数值,对花岗岩和下古生界的混合岩分布区,尚应着重查明残积土中的未风化球体及岩脉的存在,并提供各土层的承载力及桩周摩擦力。

3.3当考虑采用冲、钻、挖孔桩时,应查明建筑物范围内第四系地层与基岩的分布、埋深、厚度,并提供各土层的承载力及桩周摩擦力,应划分土层与岩层及各种风化带分界线,及岩层中有无断层构造带,并查明其产状及宽度、厚度。

3.4应查明地下水的埋藏条件、类型和水质。

当采用挖孔桩或深基础时,可用抽水试验方法查明地质的渗透性、地层涌水量、水位变化和规律、以及出现流砂的可能性。

总之,在进行高层建筑基础选型与设计时,如果能综合考虑上部结构、基础、地基、周边环境等各方面因素,选择合理的基础型式进行设计,保证结构安全与稳定,将给建筑工程的质量、造价和工期带来巨大的效益。

四、常见基础设计

现在就大型基础设计中较多见的基础类型的桩基础和后浇带的设计中应注意的问题分析如下:

桩基础

1当天然地基或人工地基的地基承载力或变形不能满足设计要求,或经过经济比较采用浅基础反而不经济时,可采用桩基础。

2桩平面布置原则:

1)力求使各桩桩顶受荷均匀,上部结构的荷载重心与桩的重心相重合,并使群桩在承受水平力和弯矩方向有较大的抵抗矩。

2)在纵横墙交叉处都应布桩,横墙较多的多层建筑可在横墙两侧的纵墙上布桩,门洞口下面不宜布桩。

3)同一结构单元不宜同时采用摩擦桩和端承桩。

4)大直径桩宜采用一柱一桩;筒体采用群桩时,在满足桩的最小中心距要求的前提下,桩宜尽量布置在筒体以内或不超出筒体外缘1倍板厚范围之内。

5)在伸缩缝或防震缝处可采用两柱共用同一承台的布桩形式。

6)剪力墙下的布桩量要考虑剪力墙两端应力集中的影响,而剪力墙中和轴附近的桩可按受力均匀布置。

3桩端进入持力层的最小深度:

1)应选择较硬上层或岩层作为桩端持力层。

桩端进入持力层深度,对于粘性土、粉土不宜小于2d(d为桩径);砂土及强风化软质岩不宜小于1.5d;对于碎石土及强风化硬质岩不宜小于1d,且不小于0.5m。

2)桩端进入中、微风化岩的嵌岩桩,桩全断面进入岩层的深度不宜小于0.5m,嵌入灰岩或其他未风化硬质岩时,嵌岩深度可适当减少,但不宜小于0.2m。

3)当场地有液化土层时,桩身应穿过液化土层进入液化土层以下的稳定土层,进入深度应由计算确定,对碎石土、砾、粗中砂、坚硬粘性土和密实粉土且不应小于0.5m,对其他非岩石土且不宜小于1.5m。

4)当场地有季节性冻土或膨胀土层时,桩身进入上述土层以下的深度应通过抗拔稳定性验算确定,其深度不应小于4倍桩径,扩大头直径及1.5m。

桩型选择原则。

桩型的选择应根据建筑物的使用要求,上部结构类型、荷载大小及分布、工程地质情况、施工条件及周围环境等因素综合确定。

1)预制桩(包括混凝土方形桩及预应力混凝土管桩)适宜用于持力层层面起伏不大的强风化层、风化残积土层、砂层和碎石土层,且桩身穿过的土层主要为高、中压缩性粘性土,穿越层中存在孤石等障碍物的石灰岩地区、从软塑层突变到特别坚硬层的岩层地区均不适用。

其施工方法有锤击法和静压法两种。

2)沉管灌注桩(包括小直径D<5O0mm,中直径D=500~600mm)适用持力层层面起伏较大、且桩身穿越的土层主要为高、中压缩性粘性土;对于桩群密集,且为高灵敏度软土时则不适用。

由于该桩型的施工质量很不稳定,故宜限制使用。

3)在饱和粘性土中采用上述两类挤土桩尚应考虑挤土效应对于环境和质量的影响,必要时采取预钻孔。

设置消散超孔隙水压力的砂井、塑料插板、隔离沟等措施。

钻孔灌注桩适用范围最广,通常适用于持力层层面起伏较大,桩身穿越各类上层以及夹层多、风化不均、软硬变化大的岩层;如持力层为硬质岩层或地层中夹有大块石等,则需采用冲孔灌注桩。

无地下水的一般土层,可采用长短螺旋钻机干作业成孔成桩。

钻(冲)孔时需泥浆护壁,故施工现场受限制或对环境保护有特殊要求的,不宜采用。

4)人工挖孔桩适用于地下水水位较深,或能采用井点降水的地下水水位较浅而持力层较浅且持力层以上无流动性淤泥质土者。

成孔过程可能出现流砂、涌水、涌泥的地层不宜采用。

5)钢桩(包括H型钢桩和钢管桩)工程费用昂贵,一般不宜采用。

当场地的硬持力层极深,只能采用超长摩擦桩时,若采用混凝土预制桩或灌注桩又因施工工艺难以保证质量,或为了要赶工期,此时可考虑采用钢桩。

钢桩的持力层应为较硬的土层或风化岩层。

6)夯扩桩,当桩端持力层为硬粘土层或密实砂层,而桩身穿越的土层为软土、粘性土、粉土,为了提高桩端承载力可采用夯扩桩。

由于夯扩桩为挤土桩,为消除挤土效应的负面影响,应采取与上述预制桩和沉管灌注桩类似的措施。

后浇带设计

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 政史地

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1