锅炉汽包水位控制系统设计.docx

上传人:b****3 文档编号:4003644 上传时间:2022-11-27 格式:DOCX 页数:15 大小:254.68KB
下载 相关 举报
锅炉汽包水位控制系统设计.docx_第1页
第1页 / 共15页
锅炉汽包水位控制系统设计.docx_第2页
第2页 / 共15页
锅炉汽包水位控制系统设计.docx_第3页
第3页 / 共15页
锅炉汽包水位控制系统设计.docx_第4页
第4页 / 共15页
锅炉汽包水位控制系统设计.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

锅炉汽包水位控制系统设计.docx

《锅炉汽包水位控制系统设计.docx》由会员分享,可在线阅读,更多相关《锅炉汽包水位控制系统设计.docx(15页珍藏版)》请在冰豆网上搜索。

锅炉汽包水位控制系统设计.docx

锅炉汽包水位控制系统设计

南华大学

过程控制仪表课程设计

设计题目锅炉汽包水位控制系统设计

学生姓名_________欧鹏___________

专业班级_______自动化1201________

学号________***********______

指导老师______刘冲______________

摘要

锅炉是典型的复杂热工系统,目前,中国各种类型的锅炉有几十万台,由于设备分散、管理不善或技术原因,使多数锅炉难以处于良好工况,增加了锅炉的燃料消耗,降低了效率。

锅炉的建模及控制问题一直是人们关注的焦点,而汽包水位是工锅炉安全、稳定运行的重要指标,保证水位控制在给定范围内,对于高蒸汽品质、减少设备损耗和运行损耗、确保整个网络安全运行具有要意义。

锅炉汽包水位高度,是确保安全生产和提供优质蒸汽的重要参数,对现代工业生产来说尤其是这样。

因为现代锅炉的特点之一就是蒸发量显著提高,汽包容积相对变小,水位变化速度很快,稍不注意就容易造成汽包满水或者烧成干锅。

在现代锅炉操作中,即使是缺水事故,也是非常危险的,这是因为水位过低,就会影响自然循环的正常进行,严重时会使个别上水管形成自由水面,产生流动停滞,致使金属管壁局部过热而爆管。

无论满水或缺水都会造成事故,因此,必须严格控制水位在规定范围之内。

维持汽包水位在给定范围内是保证锅护和汽轮机安全运行的必要条件,也是锅炉正常运行的主要指标之一。

水位过高,会影响汽包内汽水分离效果,使汽包出口的饱和蒸汽带水增多,蒸汽带水会使汽轮机产生水冲击,引起轴封破损、叶片断裂等事故。

同时会使饱和蒸汽中含盐量增高,降低过热蒸汽品质,增加在过热器管壁和汽轮机叶片上的结垢。

水位过低,则可能破坏自然循环锅炉汽水循环系统中某些薄弱环节,以致局部水冷管壁被烧坏,严重时会造成爆炸事故。

这些后果都是十分严重的。

随着锅炉容量的增加,水位变化速度愈来愈快,人工操作愈来愈繁重,因此对汽包水位实现自动调节提出了迫切的要求。

汽包水位的控制是锅炉控制的一个难点,目前,对汽包水位控制大多采用常规PID控制方式,传统的常规PID控制方式是根据控制对象的数学模型建立,由于锅炉水位系统存在非线性、不确定性时滞和负荷干扰、非最小相位特征等,其精确的数学模型往往无法获得而且常规PID控制的参数是固定不变的,难以适应各种扰动及对象变化,其控制效果往往难以满足要求,控制效果不理想。

 

1.绪论1

1.1锅炉的工作过程简介1

1.2锅炉汽包水位自动控制的意义2

1.3锅炉液位控制的难点2

2.汽包锅炉水位控制系统的设计3

2.1概述3

2.2单冲量控制系统3

2.3双冲量控制系统4

2.4三冲量控制系统.............................................5

2.4.1单级三冲量控制系统........................................5

2.4.2串级三冲量控制系统........................................6

3.锅炉汽包水位的动态特性的数学建模7

3.1给水流量作用下的动态特性7

3.2蒸汽流量扰动下的动态特性8

3.4串级三冲量的框图9

4.硬件选择

4.1流量传感器选择10

4.2水位传感器选择10

4.3电机的选择10

4.4接触器的选择10

4.5阀的开闭选择形式10

5.PID参数的整定和SIMULINK仿真11

5.1串级三冲量仿真电路图的搭建12

5.2串级三冲量PID参数的整定13

5.3仿真分析14

总结.15

参考文献.16

1.绪论

1.1锅炉的工作过程简介

锅炉是工业过程中不可缺少的动力设备,锅炉的任务是根据外界负荷的变化,输送一定质量(汽压、汽温)和相应数量的蒸汽。

它所产生的蒸汽不仅能够为蒸馏、化学反应、干燥等过程提供热源,而且还可以作为风机、压缩机、泵类驱动透平的动力源。

锅炉是由“锅”和“炉”两部分组成的。

“锅”就是锅炉的汽水系统,如图所示。

由省煤器3、汽包4、下降管8、过热器5、上升管7、给水调节阀2、给水母管1及蒸汽母管6等组成。

锅炉的给水用给水泵打入省煤器,在省煤器中,水吸收烟气的热量,使温度升高到本身压力下的沸点,成为饱和水然后引入汽包。

汽包中的水经下降管进入锅炉底部的下联箱,又经炉膛四周的水冷壁进入上联箱,随即又回入汽包。

水在水冷壁管中吸收炉内火焰直接辐射的热,在温度不变的情况下,一部分蒸发成蒸汽,成为汽水混合物。

汽水混合物在汽包中分离成水和汽,水和给水一起再进入下降管参加循环,汽则由汽包顶部的管子引往过热器,蒸汽在过热器中吸热、升温达到规定温度,成为合格蒸汽送入蒸汽母管。

图1.1锅炉的汽水系统

“炉”就是锅炉的燃烧系统,由炉膜、烟道、喷燃器、空气预热器等组成。

锅炉燃料燃烧所需的空气由送风机送入,通过空气预热器,在空气预热器中吸收烟气热量,成为热空气后,及燃料按一定的比例进入炉膛燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽。

然后经过过热器,形成一定的过热蒸汽,汇集到蒸汽母管。

具有一定压力的过热蒸汽,经过负荷设备调节阀供负荷设备使用。

及此同时,燃烧过程中产生的烟气,其中含有大量余热,除了将饱和蒸汽变成过热蒸汽外,还预热锅炉给水和空气,最后经烟囱排入大气。

1.2锅炉汽包水位自动控制的意义

锅炉汽包水位自动调节的任务是使给水量跟踪锅炉的蒸发量,并维持汽包中的水位在工艺允许的范围内。

维持汽包水位在给定范围内是保证锅护和汽轮机安全运行的必要条件,也是锅炉正常运行的主要指标之一。

水位过高,会影响汽包内汽水分离效果,使汽包出口的饱和蒸汽带水增多,蒸汽带水会使汽轮机产生水冲击,引起轴封破损、叶片断裂等事故。

同时会使饱和蒸汽中含盐量增高,降低过热蒸汽品质,增加在过热器管壁和汽轮机叶片上的结垢。

水位过低,则可能破坏自然循环锅炉汽水循环系统中某些薄弱环节,以致局部水冷管壁被烧坏,严重时会造成爆炸事故。

这些后果都是十分严重的。

随着锅炉容量的增加,水位变化速度愈来愈快,人工操作愈来愈繁重,因此对汽包水位实现自动调节提出了迫切的要求。

1.3锅炉液位控制的难点

液位的控制技术是通过控制进水或出水阀门的开度,改变水流量来实现的,而水温的控制是通过调节加热的功率来实现的。

锅炉液位的控制是锅炉控制系统较为重要和比较难于控制的一项。

由于在锅炉运行过程中存在进水量和出水量的变化,所以很难通过调整PID控制器参数来满足所有的运行条件,获得理想的控制效果。

调整过量会导致流量回路动作频繁,从而给下游设备带来了额外的干扰。

这样就导致液位控制器通常处于欠调正状态允许液位在一定范围内波动,以减小出水量的变化。

然而,欠调正的PID不能及时抑制大扰动,这就可能引起锅炉运行的安全问题。

另外,液位的波动也会破坏锅炉运行过程的稳定,使得蒸汽输送等不易控制。

影响锅炉液位的关键变量有给水流量,蒸汽出口流量和混合燃料的进料量。

各变量都有各自不同的扰动。

较冷的给水造成相应的纯滞后。

蒸汽流出量的突然增加造成了典型的“假水位”现象,使得过程暂时改变了方向,容易产生误操作而导致发生事故。

2汽包锅炉水位控制系统的设计

2.1概述

汽包水位的控制问题伴随着锅炉的出现而出现,长久以来一直是控制领域的一个典型的难问题。

随着控制理论、控制技术和现代控制方法的发展,锅炉自动化控制的水平也在逐渐提高。

其间主要经历了上世纪三四十年代单参数仪表控制,四五十年代单元组合仪表综合参数仪表控制,以及六十年代兴起的计算机控制等几个阶段。

通常有如下几种方案:

(1)单冲量控制系统。

即汽包水位的单回路水位控制系统;

(2)双冲量控制系统。

即在单冲量系统的基础上引入了蒸汽流量信号;

(3)三冲量控制系统。

是在双冲量系统的基础上再引入给水流量信号而构成。

2.2单冲量控制系统

单冲量水位控制系统以汽包水位作为唯一的控制信号,冲量即变量。

水位测量信号经变送器送到水位调节器,调节器根据汽包水位测量值H及给定值H0的偏差,通过执行器去控制给水调节阀以改变给水量,保持汽包水位在允许的范围内。

系统框图为图2.1所示。

图2.1单冲量控制系统框图

这种控制系统结构简单,是典型的单回路定制控制系统。

对于水在汽包内的停留时间较长,且负荷又比较稳定,“虚假水位”现象不严重的情况下,采用单冲量控制系统,进行PID调节一般就能满足生产要求。

单冲量汽包水位调节的优点是:

系统结构简单,在汽包容量比较大、水位在受到扰动后的反应速度比较慢、“虚假水位”现象不很严重的场合,采用单冲量水位调节时能够满足生产要求。

单冲量汽包水位调节存在着一些缺点,主要有:

(1)单冲量控制方案只根据水位信号控制给水量,在锅炉负荷变化大,即阶跃扰动很大时,由于锅炉的“虚假水位”现象,例如负荷蒸汽增加时,水位一开始先上升,调节器只根据水位作为控制信号,就去关小阀门减少给水量,这个动作对锅炉流量平衡是错误的,从而在过程一开始就扩大蒸汽流量和给水流量的波动幅度,扩大了进出流量的不平衡。

(2)从给水扰动下水位变化的动态特性可以看出,由于给水压力变化等原因造成给水量变化时,调节器要等到水位变化后才开始动作,而在调节器动作后又要经过一段滞后时间才能对汽包水位发生影响,因此必将导致汽包水位波动幅度大,过程时间长。

2.3双冲量控制系统

在汽包的水位控制中,最主要的扰动是负荷的变化。

双冲量控制系统是以锅炉汽包水位测量信号作为主控信号,以蒸汽流量信号作为前馈信号构成的“前馈-反馈”控制系统。

系统框图为图2.2所示。

图2.2双冲量控制系统框图

双冲量控制系统的优点是:

引入蒸汽流量前馈信号可以消除“虚假水位”所引起的不良影响。

当蒸汽量变化时,就有一个给水量及蒸汽量同方向变化的信号,可以减少或抵消由于“虚假水位”现象引起的假水位;引入蒸汽流量前馈信号,能够改善控制系统的静态特性,提高控制质量。

双冲量控制系统存在的问题是:

对于给水系统的扰动不能直接补偿,当给水量发生扰动时,要等到汽包水位信号变化时才能通过调节器操作执行调节,滞后时间长,水位波动大。

2.4三冲量控制系统

2.4.1单级三冲量控制系统

三冲量锅炉汽包给水自动控制系统,是以汽包水位H为主控制信号,蒸汽流量D为前馈控制信号,给水流量W为反馈控制信号组成的控制系统。

三冲量控制系统采用蒸汽量进行前馈控制。

当负荷(蒸汽流量)突然发生变化,蒸汽流量信号能使给水调节阀一开始就向正方向移动,即当蒸汽流量增加时,给水调节阀开大,抵消了由于“虚假水位”引起的方向误动作。

如给水流量减少,调节器立即根据给水流量减少的信号,开大给水阀,从而使给水量保持不变。

另外,给水流量信号也是调节器动作后的反馈信号,能使调节器及早知道控制的效果,所以使用三冲量控制系统,能使调节器动作加快,还可以避免调解过量,减少水位波动,防止失控。

系统框图为图2.3所示。

图2.3单级三冲量控制系统框图

从系统框图可以看出,单级三冲量控制系统有两个闭合回路:

一个是由给水流量W、给水变送器、调节器和调节阀组成的内回路;另一个是由汽包水位对象和内回路构成的主回路。

蒸汽流量D及其蒸汽变送器未包含在这两个闭合回路之内。

但它的引入可以改善控制质量,且不影响闭合回路工作的稳定性。

所以三冲量控制的实质是前馈加反馈的控制系统。

单级三冲量控制系统具有如下优点:

相对单冲量和双冲量控制系统,其控制品质最好,能有效地满足系统对快速性、稳定性、准确性的要求,能有效地避免“虚假水位”现象。

及单冲量和双冲量相比,最大的不足是,系统成本高,系统复杂,不容易整定。

2.4.2串级三冲量控制系统

随着生产过程向着大型、连续和强化的方向发展,对操作的要求更加严格,参数间相互关系更加复杂,对控制的精度和功能提出新的要求。

为此,需要在单回路的基础上,采取其它措施,组成复杂控制系统。

如图所示的三冲量串级控制系统框图中,主调节器接受水位信号作为主控信号和蒸汽流量信号去控制副调节器的给水设定值,副调节器除了接受主调节器的设定信号外,还接受给水流量信号。

蒸汽流量信号作为前馈信号对给水流量进行前馈控制,当蒸汽负荷突然发生变化时,蒸汽流量信号使给水调节阀立即向正确的方向移动,即当蒸汽流量增加时,给水调节阀开大,从而抵消了由于虚假水位引起的反向作用,因此减少了水位和给水流量的波动幅度。

给水流量信号作为调节阀动作后的反馈信号,能使调节器及早知道控制的效果,做出相应的调整。

系统框图为图2.4所示。

图2.4串级三冲量控制系统框图

在实际应用中,由于选定的控制阀门不一样,串级三冲量作为控制系统的设计也就不一样。

 

3.锅炉汽包水位的动态特性的数学建模

3.1给水流量作用下的动态特性

在给水流量突然增加的瞬间,锅炉的蒸发量还未改变,给水流量大于蒸发量,但水位一开始并不立即增加,这是因为温度较低的给水进入省煤器及水循环系统的流量增加了,从原有的饱和汽水混合物中吸取了一部分热量,使水面下的汽泡容积有所减少。

事实上也就是因为给水温度远低于省煤器的温度,即给水有一定的过冷度,水进入省煤器后,使一部分汽变成了水,特别是沸腾式省煤器,给水减轻了省煤器内的沸腾度,省煤器内汽泡总容积减少,因此,进入省煤器内的水首先用来填补省煤器中因汽泡破灭容积减少而降低的水位,经过一段迟延甚至水位下降后,才能因给水不断从省煤器进入汽包而使水位上升。

在此过程中,负荷还未变化,汽包中水仍在蒸发,因此水位也有下降趋势。

由H曲线可以清楚地看出给水被控对象内扰的特点是:

给水扰动刚刚加入时,由于给水的过冷度影响,水位H的变化很慢,经过一段时间之后其变化速度才逐渐增加,最后变为按一定速度直线上升,这时就是物质不平衡在起主要作用了,如果给水量和蒸汽量不能平衡,水位就不能确定。

下面简单介绍一下水位在给水扰动下的传递函数。

根据物料不平衡和热平衡的关系,锅炉汽包水位调节对象的动态特性方程经推导,可简化成:

(3.1)

式中:

h为汽包水位的高度;

为给水流量项的时间常数;

为蒸汽流量项的时间常数;

为蒸汽流量项的放大倍数;

为时间常数。

同时

的式子如下:

式中:

D为锅炉蒸汽流量;

W为锅炉给水流量。

可见,引起汽包水位变化的扰动主要是蒸汽流量(称为外扰动)和给水流量(称为外扰动),因此,在给水流量作用下的汽包水位调节对象的运动方程式可表示为:

(3.3)

两边取拉氏变换,结合工程实际忽略较小的,并考虑到汽包水位在较长一段时间里不随给水量的增加而增加。

因此,可得到锅炉汽包水位在给水流量作用下的动态数学模型如下:

 (3.4)

3.2蒸汽流量扰动下的动态特性

负荷变化时汽包水位的动态特性具有特殊的形式:

负荷增加时,蒸发量大于给水量,但水位不是下降反而迅速上升;负荷突然减小时,水位却先下降,然后迅速上升,这就是“虚假水位”现象。

虚假水位的变化情况和锅炉的特性有关,燃料突然减小时(如锅炉灭火),“虚假水位”约在2~4分钟内即达到最低值。

在外部负荷突然减小时(如汽轮机甩负荷),“虚假水位”约在20秒内即达到最低值,并且,“虚假水位”达到最低值的时间和负荷达到的最低值的时间基本相同。

汽轮机甩负荷扰动下的“虚假水位”现象是相当严重的,这给组成水位自动调节系统带来了困难。

为了维持水位在允许的范围内,运行中应对负荷的一次变动量及负荷变化速度加以限制。

同理,可得到在外扰动下,汽包水位调节对象的动态特性方程为:

(3.5)

对上式方程进行拉氏变换,并令

得到锅炉汽包水位在蒸汽流量作用下的动态数学模型如下:

(3.6)

3.3控制变量的确定

由于现场采集数据实现比较困难,这里我们设定锅炉的吨位为35t,并且取

,于是可得到锅炉汽包水位在给水流量作用下的动态数学模型为:

 

        (3.7)

    最终可得到锅炉汽包水位在蒸汽流量作用下的动态数学模型为:

(3.8)

 

3.4串级三冲量的框图

 

 

图3.2汽包水位三冲量控制系统框图

从系统框图可以看出,单级三冲量控制系统有两个闭合回路:

一个是由给水流量W、给水变送器、调节器和调节阀组成的内回路;另一个是由汽包水位对象和内回路构成的主回路。

蒸汽流量D及其蒸汽变送器未包含在这两个闭合回路之内。

但它的引入可以改善控制质量,且不影响闭合回路工作的稳定性。

所以三冲量控制的实质是前馈加反馈的控制系统。

4硬件选择

4.1流量传感器选择

根据控制方案可以知道流量传感器用于测量给水流量和蒸汽流量,这两个信号可以有效地改善控制质量,因此合理的选择流量传感器能够有效的改善整个系统的控制质量。

上海正博自动化仪表有限公司生产的LUGB-99型涡街流量计是一种基于卡门涡街原理流体振动式新型流量计,它具有测量范围广、压损小、性能稳定、准确度高和安装、使用方便等优点,广泛应用于封闭工业管道中液体、汽体和蒸汽介质体积和质量流量的测量。

4.2水位传感器选择

由于该设计的目的是控制水位稳定,而整个控制系统的基础是对水位的准确测量,因此水位能否准确测量直接关系到控制质量的优劣。

合理的选择水位传感器在水位控制系统的设计中有关键作用。

假设汽包水位应该控制在300±10mm,根据过程控制仪表量程选择原则:

仪表量程应该为被测量参数的4/3~3/2倍。

因此所选传感器的最大量程为:

400~450mm。

而且汽包水位应该控制在300±10mm,因此所选水位传感器的精度应该高于10/450=2.2%FS,因此选择该测量精度才可以满足要求。

4.3电机的选择

电机是锅炉汽包供水的动力设备,电机的准确选型关系到汽包能否准确供水进而影响到汽包水位的稳定。

假设控制的锅炉蒸发量为:

35t/h,汽包压力0.5MP,管道直径50mm因此可以对正常工作时电机的功率作如下估算:

(4.1)

由计算结果可以知道选用功率为100Kw的三相异步电动机完全可以满足工作要求,由于使用变频调速不必选用绕线型异步电动机,选用鼠笼型电机就可以满足要求。

济南华力贝尔机电设备有限公司生产的YJTG三相变频调速电机专门为变频调速设计可以根据技术要求设定其额定电压为380V,额定功率为100kw。

4.4接触器的选择

接触器是系统中用到的重要开关设备,接触器的合理选择能保证交流电动机能够准确及时的启动、停止。

根据分析三相交流异步电机的最高工作电流是工作于50Hz交流电压下,其工作电流为:

(4.2)

因此根据设计的要求浙江宏立电器有限公司生产的HLC-3X系列空调接触器主要适用于50Hz或60Hz、在AC-7b使用类别额定工作电压为230V或480V时额定电流至40A电路中,适用于起动和控制三相交流电动机(压缩机)及其它三相负载,选择五套该类型接触器同时带动一台电机可以满足设计要求。

4.5阀的开闭选择形式

关于给水调节阀的气开气关的选择,一般都是从安全角度考虑的,人员安全、生产安全、系统设备安全的需要为首要依据。

由于工业生产过程的调节阀绝大部分为气动调节阀,所以要选择调节阀的气开气关方式。

锅炉给水调节阀一般采用气关式,一旦事故发生,系统失控,供水调节阀处于全开位置,是锅炉不致因给水中断烧坏,避免爆炸等事故的发生。

5PID参数的整定和SIMULINK仿真

5.1串级三冲量仿真电路图的搭建

 

图5.1串级三冲量仿真电路图

5.2串级三冲量PID参数的整定

根据工程整定及经验公式法粗略估算主控制器的P=20,I=1,D=60,副控制器根据阶跃扰动信号粗略计算得到P=16,I=30,D=0.5.按照上述参数输入控制器。

得到的控制图像如下图5.2所示:

 

图5.2控制图像

通过图像可以看出在该参数控制下,系统存在较大的超调和震荡,因此我采用增大微分作用和减弱积分时间的方法来提高系统的稳定性。

改进参数如下图5.3和5.4所示:

图5.3主控制器PID

图5.4副控制器PID

改进控制参数后控制图像如下图5.2所示:

图5.5改进后控制图像

5.3仿真分析

主回路是用于校正水位偏差的,副回路的作用则是快速消除内扰,前馈通路用于补偿外扰,克服虚假水位现象。

在串级三冲量给水控制系统中给水流量扰动是内扰,串级三冲量给水控制系统中主调节器的任务是校正水位,这比单级三冲量给水控制系统的工作更为合理。

前馈控制是将扰动信号经前馈控制器处理后用以消除扰动对被调量的影响,它是按扰动进行的补偿控制,所以前馈控制又叫作“扰动补偿”。

由自动控制原理知道,扰动补偿属于开环控制。

前馈控制对系统的稳定性无影响,只要原系统是稳定的,施以前馈控制后,系统仍然稳定。

前馈控制只能对于可以测量的扰动作用进行扰动补偿。

前馈控制器的结构、参数取决于被控制对象及扰动通道的特性。

从仿真效果可知,串级三冲量给水控制系统对各种典型影响因素的干扰均能做出快速反应,具有较高的调节质量和调节精度,能够维持汽包水位的稳定,保障机组的安全稳定运行

总结

锅炉汽包水位控制的任务是控制给水流量使其及蒸发量保持动态平衡,从而维持汽包水位在工艺允许的范围内,是保证锅炉安全生产运行的必要条件。

汽包水位控制系统是控制理论和过程控制技术在实际生产过程中的一个典型应用案例,当前生产现场所应用的控制方法也多是本文所论述的三冲量控制方案。

大量的实践证明三冲量控制方案在锅炉汽包水位控制系统中是切实可行的,并且取得了理想的控制效果,满足了控制要求,对于企业提高生产效率、节约资源起到了明显的作用。

通过这次过程控制课程设计,我们感触颇深,不仅对书上学习的知识进行了复习及巩固,而且还培养了我独立思考及解决问题的能力。

通过将近一周的努力,我终于在规定的时间内完成了任务。

是我更加深刻地理解了锅炉液位的三冲量控制,而且将我在众多专业课程上所学到的知识相结合,更进一步提高了我们综合运用知识的能力。

通过课程设计将所学到的专业知识联系在一起,我们明白了理论知识的重要性和应用范围的宽广,加深了对专业、对工程设计的理解。

让我更加明白了在生产实际中,不能对书面的知识生搬硬套,要具体问题具体分析,才能正确快速的解决问题。

另外,还让我懂得了在设计制造的道路上,需要不断地探索及创造,坚持不懈,持之以恒。

这次的设计经历让我受益匪浅。

 

参考文献

1.黄德先等.过程控制系统.清华大学出版社

2.潘新民,王燕芳.微型计算机控制技术.高等教育出版社

3.王锦标.计算机控制系统.清华大学出版社

4.李士勇.智能控制论.哈尔滨工业大学出版社

5.阮毅,陈伯时.电力拖动自动控制系统.机械工业出版社

6.李发海,王岩.电机及拖动基础.清华大学出版社

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1