土力学考试重点.docx

上传人:b****4 文档编号:3996454 上传时间:2022-11-27 格式:DOCX 页数:20 大小:45.04KB
下载 相关 举报
土力学考试重点.docx_第1页
第1页 / 共20页
土力学考试重点.docx_第2页
第2页 / 共20页
土力学考试重点.docx_第3页
第3页 / 共20页
土力学考试重点.docx_第4页
第4页 / 共20页
土力学考试重点.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

土力学考试重点.docx

《土力学考试重点.docx》由会员分享,可在线阅读,更多相关《土力学考试重点.docx(20页珍藏版)》请在冰豆网上搜索。

土力学考试重点.docx

土力学考试重点

填空、选择、判断

颗粒级配曲线的用途:

1)由曲线的坡度可判断土的均匀程度,确定其不均匀程度:

曲线平缓——级配良好;曲线较陡——级配不良。

小于某粒径的土粒含量为10%时相应的粒径,称为有效粒径;

小于某粒径的土粒含量为60%时相应的粒径,称为限制粒径。

不均匀系数反映大小不同粒组的分布情况。

Cu愈大,土粒粒径分布愈广,表示愈不均匀,土愈易于压实。

Cu愈小,土粒粒径分布愈窄,表示愈均匀,土愈不易压实。

工程上Cu<5的土为均匀土(级配不良土);

Cu>10的土为不均匀土(级配良好的土)。

Cc值为1~3的土级配良好,小于1或大于3时级配不良。

砾类土和砂类土同时满足Cu≥5和Cc=1~3两个条件时,为级配良好的砂和砾。

不能同时满足上述条件的土,为级配不良的土。

土中水分为结合水和自由水两大类:

1、结合水:

(1)强结合水

(2)弱结合水

2、自由水:

(1)重力水

(2)毛细水

毛细压力能使潮湿砂土开挖一定高度,但失水干燥后就会松散坍塌。

土的结构分为单粒结构、蜂窝结构和絮状结构三种基本类型。

密实的单粒结构的土较稳定,力学性能好,是良好的天然地基;

蜂窝和絮状结构的土强度低、压缩性高,不可作为天然地基。

土的构造最主要特征就是成层的层理构造和具有裂隙的裂隙构造。

土工试验(试验方法)

1、烘干法:

测含水率(当前的含水率)

2、环刀法、灌砂法:

测密度

3、比重瓶法:

测土粒比重

4、筛分法、密度计法:

颗粒分析试验

5、平衡锥式液限仪法、液塑限联合测定仪法:

测界限含水率(液限、塑限)

6、击实试验:

测最优含水率

7、渗透试验:

测渗透系数

8、固结试验:

测土体固结性能(压缩、固结)(有侧限抗压强度)(压缩系数、压缩模量)

9、直接剪切试验:

测抗剪强度(黏聚力、内摩擦角)

10、三轴剪切(三轴压缩)试验:

测抗剪强度(黏聚力、内摩擦角)

土粒相对密度比重(ds或Gs):

土粒质量与同体积(4°C)纯水的质量之比。

土的天然含水率(w):

土中水的质量与土粒质量之比。

土的天然密度(ρ):

土的总质量与总体积之比。

土的孔隙比(e):

土中孔隙体积与土粒体积之比。

孔隙比反映天然土层的密实程度。

e<的土是密实的低压缩性土,e>的土是疏松的高压缩性土。

土的孔隙率(n):

土中孔隙体积与土的总体积之比。

土的饱和度(Sr):

土中孔隙水的体积与孔隙总体积之比。

饱和度愈大,表明土中孔隙充水愈多。

Sr为0~100%,

干土时Sr=0

孔隙充满水时Sr=100%

土的干密度(ρd):

土单位体积中土固体颗粒的质量。

土的饱和密度(ρsat):

土的孔隙完全被水充满时的密度。

土的浮密度(有效密度)(ρ′):

地下水位以下,土单位体积中土粒的质量与同体积水的质量之差。

同一种土同体积时:

ρsat>ρ>ρd>ρ′

土的重度指标:

即单位体积土的重量。

单位:

kN/m3

砂土的密实度可分:

松散、稍密、中密、密实

同一种黏性土随着含水量的不同分别处于固态、半固态、可塑状态及流动状态。

界限含水量中,

由可塑状态转变到流动状态的液限wL

由半固态转变到可塑状态的塑限wP

黏性土分类

粉土

粉质黏土

黏土

塑性指数IP

IP<10

10

IP>17

黏性土状态

坚硬

硬塑

可塑

软塑

流塑

液性指数IL

IL≤0

0

IL>

在压实填土时,填土的含水率是否能达到充分压实的最大影响因素,因此,需要先通过击实试验测定回填土的最优含水率和最大干密度。

填土分为:

素填土、杂填土、冲填土和压实填土。

地下水的运动方式的分类:

按流线形态分为:

层流、紊流

水头梯度:

是指沿渗流方向单位距离的水头损失。

无单位。

渗流方向单位距离时的水头损失。

只有在水头梯度很小的情况下才能适用达西定律;因为在较大水力梯度下,水在土中的流动进入紊流状态,渗流速度与水力梯度开始呈非线性关系,此时达西定律不能适用。

砂土完全符合达西定律

达西渗透定律的适用条件:

只有当渗流为层流的时候才能适用达西渗透定律。

实验室测定渗透系数分为常水头试验和变水头试验,

常水头法适用于透水性强的粗粒土,

变水头法适用于透水性弱的细粒土。

渗透力(又称动水压力):

单位体积土颗粒所受到的渗透水流作用力。

其值为:

j——渗透力,kN/m3;

γw——水的重度,10kN/m3;

i——水头梯度。

渗透力与水头梯度成正比,作用力方向与渗流(流线)方向一致。

流砂(流土):

当渗透力j≥γ′(土的有效重度),土颗粒完全失重,将处于悬浮状态而失去稳定,并随水流动的现象。

发生流砂的条件:

当j=γ′(有效重度)时,土颗粒就处于流砂临界状态。

此时的水头梯度称为临界水头梯度(icr)。

流砂现象只发生在土体表面渗流逸出之处,不发生在土体内部,当土颗粒不断逸出,将形成流砂通道并不断扩大,从而造成工程事故。

管涌:

水在土中渗流时,土中细颗粒在渗透力作用下通过粗颗粒的孔隙被水流带走,土的孔隙不断扩大,较粗颗粒也被水流逐渐带走,最终导致土体内形成贯通的通道,造成土体塌陷的现象。

发生管涌的条件:

1、几何条件:

孔隙直径>细颗粒直径、Cu>10

2、水力条件:

水力梯度>临界水头梯度

由于土是由三相组成的,则σ应由土颗粒、水、气共同承担。

有效应力:

由土颗粒承担的应力。

孔隙应力:

由孔隙内的水、气承担的应力。

孔隙水压力:

由孔隙水承担的应力。

孔隙气压力:

由孔隙气体承担的应力。

饱和土的有效应力原理:

自重应力:

是土体由于自身重力作用而存在的应力。

附加应力:

是指土体受到外荷以及地下水渗流、地震、风、雪等作用下附加产生的应力增量。

它是使地基失去稳定和产生变形的主要原因。

竖向自重应力——土体中任意深度处的竖向自重应力等于单位面积(1m×1m)上土柱的有效重量,单位KN/m2=kPa。

地下水位以上,计算竖向自重应力用天然重度γ

地下水位以下,计算竖向自重应力用有效重度γ′

地下水下降,竖向自重应力增加

基底压力:

是指建筑物的荷载通过自身基础传递给地基,基础底面单位面积土体所受到的压力。

F—基础顶面的竖向力,kN;

G—基础自重及其上土重,kN;G=γGAd,γG为基础及其上回填土重的平均重度,取γG=20kN/m3,地下水位以下扣除浮力。

d—基础埋深,m;从室内地面或室内外地面算起;

A—基底面积,m2;矩形基础A=L(长度)×b(宽度);条形基础沿长度方向取1m计算,式中A=b×1,F、G为单位长度基础内的相应值,kN/m。

中心荷载:

上部荷载的重心作用线与构件的几何中心线重合。

此时构件中只受压而不受弯矩。

偏心荷载:

上部荷载的重心作用线偏离构件的几何中心线。

此时构件既受压又受弯矩,偏离形心的垂直距离,就是偏心距。

偏心矩e:

指偏心受力构件中轴向力作用点至截面形心的距离。

基底附加应力:

建筑物建造后的基底压力扣除基底标高处原有土的自重应力后,新增加的应力。

基底附加压力等于基底压力扣除基底标高处原有土体的自重应力。

在一般压力(100-600kN)作用下,土粒和水的压缩与土的总压缩量之比是很微小的,因此完全可以忽略不计,所以把土的压缩看作是土中水和气体从孔隙中被挤出。

压缩固结实验的e—p曲线图。

压缩系数

斜率越陡,压缩系数越大,则土的压缩性越大。

为了便于应用和比较,通常采用压力间隔由

增加到

时所得的压缩系数

来评价土的压缩性。

压缩模量:

是土在无侧向变形条件下,竖向应力与应变的比值。

单位:

av——压缩系数,MPa-1;

Es——压缩模量,MPa。

压缩模量Es也是土的一个重要的压缩性指标,与压缩系数av成反比。

Es越大,av越小,土的压缩性越低。

av、Es都是反映土体在单向压缩时对压缩变形的抵抗力。

使用压缩系数和压缩模量判断土的压缩性:

低压缩性土:

a1-2<,Es>15MPa;

中压缩性土:

≤a1-2<,

Es=4~15MPa;

高压缩性土:

a1-2≥,Es<4MPa;

变形模量——土在无侧限条件下,应力与应变的比值。

E0——变形模量,kPa;

Es——压缩模量,MPa。

μ——土的泊松比,一般为~,饱和黏性土

在不排水条件下可取。

变形模量E的大小反映土体抵抗弹塑性变形的能力。

也是土的一个重要的压缩性指标。

压缩模量与变形模量的区别:

两者反映的是变形条件不一样。

压缩模量:

只有竖向变形

变形模量:

竖向和侧向变形

应力历史对土的压缩性影响

土的回弹与再压缩:

对土试样分级加荷压缩至b点,分级卸荷回弹至c点,再分级加荷压缩时:

卸荷回弹曲线与原压缩曲线不重合,土产生了弹性变形和塑性变形。

正常压缩曲线,斜率陡,土体压缩性大;

再压缩曲线,曲线平缓,压缩性明显降低。

土的应力历史:

土体在历史上曾经受到过的应力状态。

先期固结压力pc:

指土层在地质历史上曾经承受到过的并已固结稳定的最大有效应力。

土层的先期固结压力对其固结程度和压缩性有明显的影响,用先期固结压力pc与现时的土压力p0的比值描述土层的应力历史,

将黏性土进行分类:

正常固结土——先期固结压力等于目前的土压力pc=p0

超固结土——先期固结压力大于目前的土压力pc>p0(相当于挖方)

欠固结土——土在自重作用下尚未完全固结pc

计算地基最终变形量有两种方法:

分层总和法

《建筑地基基础设计规范》法——简称“规范法”

分层总和法如何确定地基压缩层深度Zn;

一般土层按σz=σc

(即附加应力等于上覆土层有效自重压力20%的深度);

软弱土层按σz=σc

(即附加应力等于上覆土层有效自重压力10%的的深度)。

当上述压缩层深度范围内遇到不能压缩的岩层时,计算深度至岩层面。

分层总和法如何分层:

1)每层厚度hi≤,一般为1~2m;

B——基底短边长度

2)不同的土层分界线,应分层;

3)地下水位界面应分层;

分层总和法如何计算各土层的压缩量:

最后求和,得出地基最终沉降量:

规范法如何分层:

1)按天然土层分层;

2)地下水位界面处:

如压缩模量Es上下一致,不分层;

如压缩模量Es上下不一致应分层。

土的单向固结理论

研究表明:

粘性土地基在基底压力作用下的沉降量S由三种不同的原因引起

初始沉降(瞬时沉降)Sd

有限范围的外荷载作用下地基由于发生侧向位移(即剪切变形)引起。

主固结沉降(渗流固结沉降)Sc

由于超孔隙水压力逐渐向有效应力转化而发生的土渗透固结变形引起的。

是地基变形的主要部分。

次固结沉降Ss

主固结沉降完成以后,在有效应力不变条件下,由于土骨架的蠕变特性引起的变形。

这种变形的速率与孔隙压力消散的速率无关,取决于土的蠕变性质,既包括剪应变,又包括体应变。

施工期间不同地基完成的沉降量:

1、碎石土和砂土:

压缩性小、渗透性大,施工期间沉降基本完成,即100%。

2、低压缩黏性土:

施工期间完成最终沉降量的50%~80%。

3、中压缩黏性土:

施工期间完成最终沉降量的20%~50%。

4、高压缩黏性土:

施工期间完成最终沉降量的5%~20%。

剪切破坏是土体破坏的主要形式。

土的抗剪强度:

土体抵抗剪切破坏的极限能力。

有效应力是由土颗粒之间的黏结作用和相互之间的咬合作用组成。

黏结作用产生的力称为土的黏聚力(内聚力),

咬合作用产生的咬合与摩擦称为土的内摩擦角。

黏性土:

直线在纵轴上的截距为黏聚力c,与横轴的夹角为内摩擦角φ。

无黏性土:

则是通过原点的一条直线。

库仑定律公式——抗剪强度公式

砂土的抗剪强度的表达式:

黏性土的抗剪强度表达式:

式中:

τf—土的抗剪强度,KPa;

σ—剪切面上的法向正应力,KPa;

c—土的黏聚力,KPa;

φ—内摩擦角(°)。

式中c、φ称为土的抗剪强度指标

其实抗剪强度类似于高中学习的摩擦力:

土体内某一点的应力状态如下:

——竖向应力(最大主应力)

——侧向应力(最小主应力)

剪切面上为

——法向应力

——剪应力

砂土的抗剪强度的表达式:

黏性土的抗剪强度表达式:

在一定载荷范围内,土的抗剪强度与法向应力之间呈直线关系。

其中

被称为土的抗剪强度指标。

为剪切破裂面与大主应力的作用面成夹角,其值等于(45°+φ/2)的。

库仑定律的总应力表达式:

库仑定律的有效应力表达式:

称为土的有效黏聚力

称为土的有效内摩擦角

饱和土有效应力:

在τ-σ坐标中,以[1/2(

),0]为圆心、1/2(

)为半径作圆

我们把库仑公式强度线绘制于同一坐标系中,则该强度线为摩尔圆的切线。

①τ<τf时,弹性平衡状态,整个摩尔圆位于抗剪强度线的下方,说明该点在任何平面上的剪应力都小于土所能发挥的抗剪强度,因此不会发生剪切破坏。

②τ=τf时,极限平衡状态,摩尔圆与抗剪强度线相切于A点,表明通过A点的任意平面上的剪应力都等于抗剪强度,该点就处于极限平衡状态。

③τ>τf时,剪切破坏状态,抗剪强度线是摩尔圆的一条割线,该点的任意平面上的剪应力已超过了土的抗剪强度,实际上这种情况是不可能存在的。

室内的抗剪强度试验:

直接剪切试验

三轴压缩试验

无侧限抗压试验

直接剪切试验

正应力

剪应力

直接剪切试验的类型:

试验类型

加垂直荷载时

剪切时速度

模拟类型

快剪

不固结

快速

不排水剪切

固结快剪?

固结

快速

固结不排水剪切

慢剪

固结

慢速

固结排水剪切

直接剪切试验的缺点:

①限定的剪切面不是土样最薄弱面;

②应力应变分布不均匀,且垂直荷载发生偏转,使主应力大小方向都发生偏转;

③受剪面积逐渐缩小,而在计算抗剪强度时仍按土样的原截面积计算;

④试验时不能严格控制排水条件,不能量测孔隙水压力。

三轴剪切试验的类型:

试验类型

施加围压后

剪切时

简称

不固结不排水剪

不固结不排水

不排水

UU试验

固结不排水剪

固结排水

不排水

CU试验

固结排水剪

固结排水

排水

CD试验

优点:

①试验中能严格控制试样排水条件,量测孔隙水压力,了解土中有效应力变化情况;

②试样中的应力分布比较均匀,剪切面在试样的最薄弱处,结果比直剪试验可靠。

缺点:

①试验仪器复杂,操作技术要求高,试样制备较复杂;

②试验在

的轴对称条件下进行,与土体实际受力情况可能不符。

无侧限抗压强度试验,与岩石单轴抗压强度试验类似,是三轴压缩试验的特例,对试样不施加周围压力,即

,只施加轴向压力直至发生破坏,试样在无侧限压力条件下,剪切破坏时试样承受的最大轴向压力qu,称为无侧限抗压强度。

挡土墙(挡土结构物)——用来支撑天然或人工斜坡不致坍塌以保持土体稳定性,或使部分侧向荷载传递分散到填土上的一种结构物。

挡土结构物上的土压力——挡土墙后的土体作用在挡土墙上的侧向压力。

墙体离开土体——主动土压力

墙体挤压土体——被动土压力

墙体静止——静止土压力

(1)主动土压力

当挡土墙在土压力作用下离开土体向前位移,墙后土体达到主动极限平衡状态时,作用在墙背上的土压力称为主动土压力,表示为Ea。

支挡构筑物挡土墙所承受周围填土的侧压力属主动土压力。

(2)被动土压力

当挡土墙在外力作用下推挤土体向后位移,墙后土体达到被动极限平衡状态时,作用在挡土墙上的土压力称为被动土压力,用Ep表示。

如桥台受到桥上荷载推向土体时,土对桥台产生的侧压力属被动土压力。

(3)静止土压力

当挡土墙静止不动,墙后土体处于弹性平衡状态时,作用在墙背上的土压力称为静止土压力,用E0表示。

如地下室外墙可视为受静止土压力的作用。

实验研究表明:

①在相同条件下,主动土压力小于静止土压力,而静止土压力又小于被动土压力,亦即

②而且产生被动土压力所需的位移量,大大超过产生主动土压力所需的位移量。

静止土压力

墙体不发生任何位移

相当于天然地基土的自重应力状态(侧限状态)。

K0——静止土压力系数

朗肯土压力理论是根据半无限空间土体处于极限平衡状态下土的大、小主应力关系,而得出的土压力计算方法。

朗肯土压力理论的基本假定:

①墙背竖直;

②墙背光滑,墙背与填土之间无摩擦力;

③墙后填土表面水平。

自重应力作用下,挡土墙半无限土体内各点的应力从弹性平衡状态发展为极限平衡状态(滑裂面形成)的情况。

黏性土

砂土

直立临界深度——主动土压力为零时,即

墙后填土有地下水

挡土墙后的回填土常会部分成全部处于地下水位以下,由于地下水的存在将使土的含水量增加,抗剪强度降低,从而使土压力增大,同时还会产生静水压力。

因此,挡土墙应该有良好的排水措施。

当墙后填土有地下水时,作用在墙背上的侧向压力有土压力和水压力两部分。

朗肯土压力理论:

墙背垂直、光滑、填土水平

主动和被动

极限平衡条件

砂土和黏性土

朗肯主动土压力系数

朗肯被动土压力系数

静止土压力系数

土压力系数大小比较

土压力大小比较

库仑土压力计算的假设条件:

1、墙后填土为散体材料(c=0);

2、滑动破坏面为通过墙踵的平面;

3、滑动土楔体为刚体。

朗肯土压力理论与库仑土压力理论的区别:

求法与步骤:

朗肯理论

库仑理论

土体内各点均处于极限平衡状态:

极限应力法

刚性楔体,滑面上处于极限平衡状态:

滑动楔体法

先求土压力强度p

先求总土压力E

对角度的要求:

朗肯理论

库仑理论

?

?

?

墙背竖直、光滑,

?

?

?

填土水平

?

?

墙背、填土无限制

挡土墙就其结构型式可分为以下主要类型:

(一)重力式挡土墙

(二)悬臂式挡土墙

(三)扶壁式挡土墙

(四)锚定板及锚杆式挡土墙

墙背的主动土压力:

仰斜式<垂直式<俯斜式。

如为挖方边坡,采用仰斜式与边坡紧密结合;

如为填方边坡,采用垂直式或俯斜式,利于墙背填土夯实。

挡土墙的设计的基本步骤:

(1)选择墙型,确定挡土墙的截面尺寸;

(2)稳定性验算,包括抗倾覆和抗滑移稳定验算;

(3)地基的承载力验算;

(4)墙身强度验算;

(5)抗震计算。

填料:

首选砂土、砾石、碎石,抗剪强度稳定,易于排水;

次选黏性土分层夯实(密实度>85%)。

冻土地区:

选择非冻胀性填料(炉渣、碎石、粗砂)

不应采用:

淤泥、耕植土(未固结、抗剪强度低)和膨胀性黏土(遇水膨胀增加土压力)。

不含杂物:

冻结土块、木块(树根、树枝)、建筑垃圾。

1、挡土墙的稳定性验算:

包括:

1)、抗滑移稳定性验算;

2)、抗倾覆稳定性验算;

2、地基承载力验算;

3、墙身强度验算。

1、挡土墙的稳定性验算:

抗滑移稳定——挡土墙在墙背土压力作用下可能沿着墙底发生滑动破坏,要保证挡土墙的抗滑移稳定性,必须要求抗滑力和滑动力之比不小于,该比值称为抗滑安全系数,即

抗倾覆稳定——挡土墙在墙背土压力作用下可能绕墙趾向前发生转动而倾覆,要保证挡土墙的抗倾覆稳定性,必须要求抗倾覆力矩和倾覆力矩之比不小于,该比值称为抗倾覆安全系数,即

1、土坡:

是指具有一定倾斜坡面的土体。

3、土坡滑动的原因

1)土体内部剪应力的增大:

坡顶施工、坡顶堆载、降雨土体含水量增加等

2)抗滑力降低:

坡底开挖(基坑、路基开挖)

3)土体抗剪强度降低:

孔隙水压力增加而有效抗剪强度降低,降雨产生渗流(渗透力)

4)振动:

地震、爆破

土坡滑动的预防措施

(1)改善排水条件

(2)种植适当的植被,避免土壤侵蚀

(3)减轻土坡上部的重量,增加坡脚土体的重量

(4)减小坡高或坡角

(5)避免在坡顶堆放荷载,避免人、畜对坡面的践踏

(6)对陡坡采用一定的坡面或坡体保护措施

(7)修复坡顶裂缝

(8)危险评估和预警

右下图表示坡角为β的无黏性土土坡,不考虑渗流的影响。

纯净的干砂颗粒间无黏聚力c,其抗剪强度只有摩擦力(内摩擦角φ),颗粒的自重W在垂直和平行于坡面方向的分力

平行于坡面上的分力T将使土颗粒M

向下滑动(滑动力),而阻止土颗

粒下滑的抗滑力则是由垂直

于坡面上的分力N引起的最大

静摩擦力Tf

则稳定性系数Fs为:

由上式可知,当坡角与砂的内摩擦角相等(β=Φ)时,稳定性系数Fs=1,此时抗滑力等于滑动力,土坡处于极限平衡状态。

此时的坡角β称为天然休止角。

从上式还可看出,无黏性土土坡的稳定性与坡高无关,仅取决于坡角β。

只要β<Φ(Fs>1),土坡就是稳定的。

为了保证土坡有足够的安全储备,可取Fs=~。

所以,天然休止角是干燥松散砂土维持稳定的最大坡度。

即,天然休止角即天然坡角。

松散的无黏性土堆积时能够保持稳定的最大坡角

黏性土的土坡稳定性系数求法:

圆弧形滑面采用条分法,是一种试算法,基本步骤为:

1)按比例画出土坡剖面,如下图所示;

2)任选—圆心o,以oa为半径作圆弧,此圆弧ab为假定的滑动面,将滑动面以上土体分成任意n个宽度相等的土条;

3)计算每个土条的力(沿滑坡横向取1m);

4)以不同的圆心和不同

的半径进行重复计算,

找出最小的稳定性系数Fs,

最小的稳定性系数对应的滑弧即为最危险的滑动面。

(可编程进行计算)

坡率亦称坡度、坡比,即边坡高宽比(H:

B)。

高度较大的边坡应分级开挖,应验算边坡整体的和各级的稳定性。

进行地基基础设计时,地基必须满足如下条件:

(1)承载力要求(强度要求):

建筑物的基底压力应该在地基所允许的承载能力之内。

要求:

地基承载力

基底附加应力,才能满足承载力要求(强度要求)

(2)变形要求:

建筑物基础的沉降或沉降差必须在该建筑物所允许的范围之内。

(3)稳定要求:

建筑物受水平荷载或建在斜坡上、边坡附近时,应验算地基稳定性

通常在地基计算时,

首先应根据地基承载力及基底附加应力

确定基础埋置深度和底面尺寸,

然后验算地基变形,必要时验算地基稳定性。

地基承载力——地基土单位面积上所能承受荷载的能力。

分为:

极限承载力、承载力特征值。

(1)极限承载力——地基即将丧失稳定性时的承载力。

(2)承载力特征值——地基稳定有足够的安全度并且变形控制在建筑物容许范围内时的承载力。

1、土质地基承载力特征值的确定

(1)现场静载荷试验法

(2)原位测试查表法:

根据标准贯入试验锤击数(N)确定承载力

根据重型触探试验锤击数()确定承载力

(3)建筑经验类比法

根据当地建筑成功经验,同一土层的承载力特征值可以采用类比法参考确定。

(4)根据土的抗剪强度指标确定

浅基础的定义:

埋深浅,一般d<5m,或d/b小于等于1。

只考虑基底以下的土体承受荷载。

浅基础的三种破坏模式

①整体剪切破坏

②局部剪切破坏

③刺入剪切破坏(冲切剪切破坏)

浅基础破坏模式的影响因素和判别因素很多,主要是:

地基土的特性和基础尺寸、埋深。

概括为:

土质较硬、密实,压缩性小,基础埋深不大,一般出现整体剪切破坏现象。

地基土质松软,压缩性大,则容易出现局部剪切破坏或刺入剪切破坏。

随着基础埋深的增加,常见的是局部剪切破坏和刺入剪切破坏。

若基础埋深大,即使是密实的砂土,也不会出现整体剪切破坏现象。

深基础

埋深大,建筑物荷载由基础侧面土的摩阻力和基础底面以下土的承载力共同承受。

临塑荷载:

是指基

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 小学教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1