数字电压表.docx

上传人:b****4 文档编号:3995913 上传时间:2022-11-27 格式:DOCX 页数:20 大小:881.63KB
下载 相关 举报
数字电压表.docx_第1页
第1页 / 共20页
数字电压表.docx_第2页
第2页 / 共20页
数字电压表.docx_第3页
第3页 / 共20页
数字电压表.docx_第4页
第4页 / 共20页
数字电压表.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

数字电压表.docx

《数字电压表.docx》由会员分享,可在线阅读,更多相关《数字电压表.docx(20页珍藏版)》请在冰豆网上搜索。

数字电压表.docx

数字电压表

目录

摘要:

2

1.系统的总体设计3

1.1设计方案3

1.2总体设计框图4

2.硬件电路设计5

2.1核心元器件介绍5

2.1.1芯片介绍5

2.1.2其他部分简介14

3.软件设计15

3.1程序流程图15

3.2C语言程序清单16

3.3调试仿真17

4.小结17

附录1:

程序及原理图18

附录2:

参考文献20

 

摘要:

数字电压表是诸多数字化仪表的核心与基础。

已数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表(如:

温度计、湿度计、酸度计、重量、厚度计等),几乎覆盖了电子电工测量、工业测量、自动化仪表等各个领域。

因此对数字电压表作全面深入的了解是很有必要的。

数字电压表的特点:

1.显示清晰直观,读数准确

2.显示位数

3.准确度高

4.分辨率高

5.测量范围宽

6.扩展能力强

7.测量速度快

8.输入阻抗高

9.集成度高,微功耗

10.抗干扰能力强

数字电压表的诞生打破了传统电子测量仪器的模式和格局。

它显示清晰直观、读数准确,采用了先进的数显技术,大大减少了因人为因素所造成的误差事件。

数字电压表是把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式,并加以显示的仪表。

数字电压表把电子技术、计算技术、自动化技术的成果与精密电测量技术密切的结合在一起,成为仪器、仪表领域中独立而完整的一个分支,数字电压表标志着电子仪器领域的一场革命,也开创了现代电子测量技术的先河。

本设计采用了以单片机为开发平台,控制系采用AT89C52单片机,A/D转换采用ADC0808,系统除能保确实现要求的功能以外,还能方便进行8路其他A/D转换量得测量、远程测量结果传送等扩展功能。

简易数字电压测量电路由A/D转换、数据处理、显示控制等组成。

关键词:

单片机;AT98C52;A/D转换;ADC0808;数据处理

1.系统的总体设计

利用单片机AT89C52及ADC0808制作3位数字电压表,更好地学习掌握单片机AT89C52的工作原理及A/D的转换编程方法。

⑴主控部分:

选择单片机为核心元件构成系统。

⑵检测部分:

测量电压范围分为两档,DC0~5V和DC0~50V,最小测量电压误差50mV。

⑶显示部分:

用4位数码管显示测量电压,2位整数,2位小数。

主要分为两部分:

硬件电路及软件程序。

硬件电路包括:

单片机及外围电路,模拟信号采集电路,A/D转换电路,数码管显示电路,各部分电路的衔接。

软件的程序可采用C语言或汇编,这里采用汇编语言。

1.1设计方案

数字电压表的设计方案很多,但采用集成电路来设计较多。

其设计主要是由模拟电路和数字电路两大部分组成,模拟部分包括A/D转换器,基准电源等;数字部分包括振荡器,数码显示,计数器等。

其中,A/D转换器将输入的模拟量转换成数字量,它是数字电压表的一个核心部件,对它的选择一般有两种选择方案:

●采用双积分A/D转换器MC14433,它有多路调制的BCD码输出端和超量程输出端,采用动态扫描显示,便于实现自动控制,且具有外接元件少,输入阻抗高,功耗低,电源电压范围宽,精度高等特点,但芯片只能完成A/D转换功能,要实现显示功能还需配合其它驱动芯片等,使得整部分硬件电路板布线复杂,加重了电路设计和实际焊接的工作。

●逐次逼近式A/D转换器。

它的转换速度更快,而且精度更高,比如ADC0808、ADC0809等,它们通常具有8路模拟选通开关及地址译码、锁存电路等,它们可以与单片机系统连接,将数字量送单片机进行分析和显示。

这样电路设计简单,电路板布线不复杂,便于焊接、调试。

虽然MC14433的精度高,功耗低,但是此芯片的成本高,要实现显示功能还需配合其它驱动芯片等,使得整部分硬件电路板布线复杂,根据本次设计的要求和目的,我们决定使用第二种方案。

 

1.2总体设计框图

液晶显示器

 

外界模拟信号

显示出模拟电压

的数值

A/D

转换器

ADC0809

振荡器、时序脉冲

预先写好的汇编程序

图1-1系统总体框图

在这个电路图中,单片机AT89C52与模数转换器ADC0808作为核心元件。

晶振荡器将晶振信号由XTAL传入驱动单片机工作,由电阻电容组成的复位电路,通电后,按下开关,上拉电阻使RES脚高电平,实现复位。

AT89C52单片机中,P0口接显示器的段选信号,控制显示器的段显示,P2.1~P2.3接显示器的位选信号,控制显示器的位显示。

P2.4~P2.7接ADC0808的控制信号引脚CLOCK,EOC,START,ALE,其作用在芯片引脚内有详细介绍。

P1口接ADC0808的数据口,用于向码数转换器传输数据。

ADC0808通过OUT1~OUT8向P3.0传送转换好的数据,经量化编码后传入单片机。

为了明了,这里采用单通道(通道0)控制(其余通道电平拉低),用双刀双掷开关控制其量程的选择。

ADC0808在单片机提供的时钟信号下引发中断,当上升沿过来时进行清零,当下降沿来临时启动芯片开始工作。

START则控制ADC0808的运行与否。

对于电压的采集,在仿真图中采用电阻分压模拟。

实际设计中,采用霍尔传感器,利用其电流计磁场平衡式检测外界电流,转换成电压后送入模数转换器。

 

2.硬件电路设计

2.1核心元器件介绍

2.1.1芯片介绍

1.单片机AT89C52介绍

芯片引脚图:

图2-1AT89C51引脚排列图

描述:

AT89C52是一个低电压,高性能CMOS8位单片机,片内含8kbytes的可反复擦写的Flash只读程序存储器和256bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。

AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。

其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

主要特性:

1.兼容MCS51指令系统

2.8k可反复擦写(大于1000次)FlashROM;

3.32个双向I/O口;

4.256x8bit内部RAM;

5.3个16位可编程定时/计数器中断;

6.时钟频率0-24MHz;

7.2个串行中断,可编程UART串行通道;

8.2个外部中断源,共8个中断源;

9.2个读写中断口线,3级加密位;

10.低功耗空闲和掉电模式,软件设置睡眠和唤醒功能;

11.有PDIP、PQFP、TQFP及PLCC等几种封装形式,以适应不同产品的需求。

引脚描述

AT89C52P为40脚双列直插封装的8位通用微处理器,采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc52相同,其主要用于会聚调整时的功能控制。

功能包括对会聚主IC内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。

主要管脚有:

XTAL1(19脚)和XTAL2(18脚)为振荡器输入输出端口,外接12MHz晶振。

RST/Vpd(9脚)为复位输入端口,外接电阻电容组成的复位电路。

VCC(40脚)和VSS(20脚)为供电端口,分别接+5V电源的正负端。

P0~P3为可编程通用I/O脚,其功能用途由软件定义,在本设计中,P0端口(32~39脚)被定义为N1功能控制端口,分别与N1的相应功能管脚相连接,13脚定义为IR输入端,10脚和11脚定义为I2C总线控制端口,分别连接N1的SDAS(18脚)和SCLS(19脚)端口,12脚、27脚及28脚定义为握手信号功能端口,连接主板CPU的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。

ØVCC:

电源电压

ØGND:

ØP0口:

P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。

作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口P0写“1”时,可作为高阻抗输入端用。

 在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。

 在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

ØP1口:

P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

 与AT89C51不同之处是,P1.0和P1.1还可分别作为定时/计数器2的外部计数输入(P1.0/T2)和输入(P1.1/T2EX),Flash编程和程序校验期间,P1接收低8位地址。

  

引脚号

功能特性

引脚号

功能特性

P1.0

T2,时钟输出

P1.1

T2EX(定时/计数器2)

表2-1.P1.0和P1.1的第二功能

ØP2口:

P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口P2写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

 在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。

在访问8位地址的外部数据存储器(如执行MOVX@RI指令)时,P2口输出P2锁存器的内容。

 Flash编程或校验时,P2亦接收高位地址和一些控制信号。

ØP3口:

P3口是一组带有内部上拉电阻的8位双向I/O口。

P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。

此时,被外部拉低的P3口将用上拉电阻输出电流(IIL)。

 P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能

 P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。

ØRST:

复位输入。

当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

ØALE/

:

当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。

一般情况下,ALE仍以时钟振荡频率的1/6输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。

要注意的是:

每当访问外部数据存储器时将跳过一个ALE脉冲。

 对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。

 如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。

该位置位后,只有一条MOVX和MOVC指令才能将ALE激活。

此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE禁止位无效。

PSEN:

程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。

在此期间,当访问外部数据存储器,将跳过两次PSEN信号。

EA/VPP:

外部访问允许。

欲使CPU仅访问外部程序存储器(地址为0000H—FFFFH),EA端必须保持低电平(接地)。

需注意的是:

如果加密位LB1被编程,复位时内部会锁存EA端状态。

 如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。

 Flash存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp。

ØXTAL1:

振荡器反相放大器的及内部时钟发生器的输入端。

ØXTAL2:

振荡器反相放大器的输出端。

特殊功能寄存器

在AT89C52片内存储器中,80H-FFH共128个单元为特殊功能寄存器(SFE),SFR的地址空间映象如表2所示。

并非所有的地址都被定义,从80H—FFH共128个字节只有一部分被定义,还有相当一部分没有定义。

对没有定义的单元读写将是无效的,读出的数值将不确定,而写入的数据也将丢失。

不应将数据“1”写入未定义的单元,由于这些单元在将来的产品中可能赋予新的功能,在这种情况下,复位后这些单元数值总是“0”。

AT89C52除了与AT89C51所有的定时/计数器0和定时/计数器1外,还增加了一个定时/计数器2。

定时/计数器2的控制和状态位位于T2CON(参见表3)T2MOD(参见表4),寄存器对(RCAO2H、RCAP2L)是定时器2在16位捕获方式或16位自动重装载方式下的捕获/自动重装载寄存器。

数据存储器

  AT89C52有256个字节的内部RAM,80H-FFH高128个字节与特殊功能寄存器(SFR)地址是重叠的,也就是高128

  字节的RAM和特殊功能寄存器的地址是相同的,但物理上它们是分开的。

  当一条指令访问7FH以上的内部地址单元时,指令中使用的寻址方式是不同的,也即寻址方式决定是访问高128字节RAM还是访问特殊功能寄存器。

如果指令是直接寻址方式则为访问特殊功能寄存器。

  例如,下面的直接寻址指令访问特殊功能寄存器0A0H(即P2口)地址单元。

  MOV0A0H,#data

  间接寻址指令访问高128字节RAM,例如,下面的间接寻址指令中,R0的内容为0A0H,则访问数据字节地址为0A0H,

  而不是P2口(0A0H)。

  MOV@R0,#data

  堆栈操作也是间接寻址方式,所以,高128位数据RAM亦可作为堆栈区使用。

●定时器0和定时器1:

  AT89C52的定时器0和定时器1的工作方式与AT89C51相同。

定时器2

  定时器2是一个16位定时/计数器。

它既可当定时器使用,也可作为外部事件计数器使用,其工作方式由特殊功能寄存器T2CON(如表3)的C/T2位选择。

定时器2有三种工作方式:

捕获方式,自动重装载(向上或向下计数)方式和波特率发生器方式,工作方式由T2CON的控制位来选择。

定时器2由两个8位寄存器TH2和TL2组成,在定时器工作方式中,每个机器周期TL2寄存器的值加1,由于一个机器周期由12个振荡时钟构成,因此,计数速率为振荡频率的1/12。

在计数工作方式时,当T2引脚上外部输入信号产生由1至0的下降沿时,寄存器的值加1,在这种工作方式下,每个机器周期的5SP2期间,对外部输入进行采样。

若在第一个机器周期中采到的值为1,而在下一个机器周期中采到的值为0,则在紧跟着的下一个周期的S3P1期间寄存器加1。

由于识别1至0的跳变需要2个机器周期(24个振荡周期),因此,最高计数速率为振荡频率的1/24。

为确保采样的正确性,要求输入的电平在变化前至少保持一个完整周期的时间,以保证输入信号至少被采样一次。

●捕获方式

  在捕获方式下,通过T2CON控制位EXEN2来选择两种方式。

如果EXEN2=0,定时器2是一个16位定时器或计数器,计数溢出时,对T2CON的溢出标志TF2置位,同时激活中断。

如果EXEN2=1,定时器2完成相同的操作,而当T2EX引脚外部输入信号发生1至0负跳变时,也出现TH2和TL2中的值分别被捕获到RCAP2H和RCAP2L中。

另外,T2EX引脚信号的跳变使得T2CON中的EXF2置位,与TF2相仿,EXF2也会激活中断。

捕获方式如图4所示。

●自动重装载(向上或向下计数器)方式

  当定时器2工作于16位自动重装载方式时,能对其编程为向上或向下计数方式,这个功能可通过特殊功能寄存器T2CON(见表5)的DCEN位(允许向下计数)来选择的。

复位时,DCEN位置“0”,定时器2默认设置为向上计数。

当DCEN置位时,定时器2既可向上计数也可向下计数,这取决于T2EX引脚的值,参见图5,当DCEN=0时,定时器2自动设置为向上计数,在这种方式下,T2CON中的EXEN2控制位有两种选择,若EXEN2=0,定时器2为向上计数至0FFFFH溢出,置位TF2激活中断,同时把16位计数寄存器RCAP2H和RCAP2L重装载,RCAP2H和RCAP2L的值可由软件预置。

  若EXEN2=1,定时器2的16位重装载由溢出或外部输入端T2EX从1至0的下降沿触发。

这个脉冲使EXF2置位,如果中断允许,同样产生中断。

  定时器2的中断入口地址是:

002BH——0032H。

当DCEN=1时,允许定时器2向上或向下计数,如图6所示。

这种方式下,T2EX引脚控制计数器方向。

T2EX引脚为逻辑“1”时,定时器向上计数,当计数0FFFFH向上溢出时,置位TF2,同时把16位计数寄存器RCAP2H和RCAP2L重装载到TH2和TL2中。

T2EX引脚为逻辑“0”时,定时器2向下计数,当TH2和TL2中的数值等于RCAP2H和RCAP2L中的值时,计数溢出,置位TF2,同时将0FFFFH数值重新装入定时寄存器中。

当定时/计数器2向上溢出或向下溢出时,置位EXF2位。

可编程时钟输出

定时器2可通过编程从P1.0输出一个占空比为50%的时钟信号,如图8所示。

P1.0引脚除了是一个标准的I/O口外,还可以通过编程使其作为定时/计数器2的外部时钟输入和输出占空比50%的时钟脉冲。

当时钟振荡频率为16MHz时,输出时钟频率范围为61Hz—4MHz。

当设置定时/计数器2为时钟发生器时,C/T2(T2CON.1)=0,T2OE(T2MOD.1)=1,必须由TR2(T2CON.2)启动或停止定时器。

时钟输出频率取决于振荡频率和定时器2捕获寄存器(RCAP2H,RCAP2L)的重新装载值,公式如下:

输出时钟频率=振荡器频率/{4*[65536-(RCP2H,RCP2L)]}

在时钟输出方式下,定时器2的翻转不会产生中断,这个特性与作为波特率发生器使用时相仿。

定时器2作为波特率发生器使用时,还可作为时钟发生器使用,但需要注意的是波特率和时钟输出频率不能分开确定,这是因为它们同使用RCAP2L和RCAP2L。

UARTAT89C52的UART工作方式与AT89C51工作方式相同。

中断

  AT89C52共有6个中断向量:

两个外中断(INT0和INT1),3个定时器中断(定时器0、1、2)和串行口中断。

所有这些中断源如图9所示。

  这些中断源可通过分别设置专用寄存器IE的置位或清0来控制每一个中断的允许或禁止。

IE也有一个总禁止位EA,它能控制所有中断的允许或禁止。

  注意表5中的IE.6为保留位,在AT89C51中IE.5也是保留位。

程序员不应将“1”写入这些位,它们是将来AT89系列产品作为扩展用的。

  定时器2的中断是由T2CON中的TF2和EXF2逻辑或产生的,当转向中断服务程序时,这些标志位不能被硬件清除,事实上,服务程序需确定是TF2或EXF2产生中断,而由软件清除中断标志位。

  定时器0和定时器1的标志位TF0和TF1在定时器溢出那个机器周期的S5P2状态置位,而会在下一个机器周期才查

  询到该中断标志。

然而,定时器2的标志位TF2在定时器溢出的那个机器周期的S2P2状态置位,并在同一个机器周期内查询到该标志。

时钟振荡器

 AT89C52中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。

 这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器。

外接石英晶体(或陶瓷谐振器)及电容C1、C2接在放大器的反馈回路中构成并联振荡电路。

对外接电容C1、C2虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性,如果使用石英晶体,我们推荐电容使用30pF±10pF,而如使用陶瓷谐振器建议选择40pF±10F。

可以采用外部时钟。

这种情况下,外部时钟脉冲接到XTAL1端,即内部时钟发生器的输入端,XTAL2则悬空。

由于外部时钟信号是通过一个2分频触发器后作为内部时钟信号的,所以对外部时钟信号的占空比没有特殊要求,但最小高电平持续时间和最大的低电平持续时间应符合产品技术条件的要求。

图2-2振荡电路

图2-3电路内部振荡图2-4外部振荡电路

 

2.ADC0808芯片

图2-5ADC0808引脚排列图

a.描述:

ADC0808和ADC0809除精度略有差别外(前者精度为8位、后者精度为7位),其余各方面完全相同。

它们都是CMOS器件,不仅包括一个8位的逐次逼近型的ADC部分,而且还提供一个8通道的模拟多路开关和通道寻址逻辑,因而有理由把它作为简单的“数据采集系统”。

利用它可直接输入8个单端的模拟信号分时进行A/D转换,在多点巡回检测和过程控制、运动控制中应用十分广泛。

b.主要特性

 1)8路输入通道,8位A/D转换器,即分辨率为8位。

  2)具有转换起停控制端。

  3)转换时间为100μs(时钟为640kHz时),130μs(时钟为500kHz) 

  4)单个+5V电源供电

  5)模拟输入电压范围0~+5V,不需零点和满刻度校准。

  6)工作温度范围为-40~+85摄氏度

低功耗,约15mW。

c.外部特性(引脚功能)

图2-6ACD0808引脚功能

●IN0~IN7:

8路模拟量输入端。

●DB0-DB7:

8位数字量输出端。

●ADDA、ADDB、ADDC:

3位地址输入线,用于选通8路模拟输入中的一路

●ALE:

地址锁存允许信号,输入,高电平有效。

●START:

A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。

●EOC:

A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

●OE:

数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

●CLK:

时钟脉冲输入端。

要求时钟频率不高于640KHZ。

●REF(+)、REF(-):

基准电压。

●Vcc:

电源,单一+5V。

●GND:

接地。

2.1.2其他部分简介

1.模拟电压输入部分

这里设计将实际的模拟信号采集电路简化成一个分压电路模型,实际由霍尔传感器利用其电流计磁场平衡式检测外界电流,转换成电压(模拟电压)后送入模数转换器。

 

2.液晶显示器

1602液晶也叫1602字符型液晶它是一种专门用来显示字母、数字、符

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1