液晶显示屏背光灯及高压驱动电路原理与故障维修.docx
《液晶显示屏背光灯及高压驱动电路原理与故障维修.docx》由会员分享,可在线阅读,更多相关《液晶显示屏背光灯及高压驱动电路原理与故障维修.docx(68页珍藏版)》请在冰豆网上搜索。
液晶显示屏背光灯及高压驱动电路原理与故障维修
大屏幕液晶显示屏背光灯及高压驱动电路原理及电路分析
(目前液晶电视的销量和社会保有量非常大,液晶电视的维修资料奇缺,而液晶电视的背光灯高压驱动电路又是液晶电视中极易发生故障的部位,它类似于CRT电视的行扫描电路,是高压大电流电路,其故障率不低于CRT电视的行扫描电路。
目前对于该部分的原理电路分析维修的资料很少,该文对于背光灯管及驱动电路的特性、构造、组成、要求、电路原理分析比较详尽,以帮助维修人员更加深刻的理解液晶电视背光灯驱动电路,为下一步维修打好基础)
液晶电视的显示屏是属于被动发光型的显示器件,液晶屏自身不发光,它需要借助背光灯来实现屏的发光,即背光灯管发出光线通过液晶屏透射出来,利用液晶的分子在电场作用下控制通过的光线(对光进行调制)以形成图像,所以一块液晶屏工作成像必须配上背光源才能成为一个完整的显示屏,要显示色彩丰富的优质图像,要求背光灯的光谱范围要宽,接近日光色以便最大限度的展现自然界的各种色彩。
目前的液晶屏背光灯,一般采用的是光谱范围较好的冷阴极荧光灯(coldcathodefluorescentlamp;CCFL)作为背光光源。
大屏幕的液晶电视要保证有足够的亮度、对比度和整个屏幕亮度的均匀性,均采用多灯管系统,32寸屏一般采用16只灯管,47寸屏一般采用24只灯管。
耗电量每只灯管约为为8W计算,一台32寸屏的液晶电视背光灯耗电量达到130W,一台47寸的液晶电视背光灯的耗电量达到近200W(加上其它电路耗电,一台32寸屏的液晶电视耗电量在200W左右)
冷阴极荧光灯的构造和工作原理
冷阴极荧光灯CCFL是气体放电发光器件,其构造类似常用的日光灯,不同的是采用镍﹑钽和锆等金属做成的无需加热即可发射电子的电极——冷阴极来代替钨丝等热阴极,灯管内充有低气压汞气,在强电场的作用下,冷阴极发射电子使灯管内汞原子激发和电离,产生灯管电流并辐射出253.7nm紫外线,紫外线再激发管壁上的荧光粉涂层而发光,图1。
冷阴极荧光灯的特性
冷阴极荧光灯是一个高非线性负载,它的触发(启动)电压一般是三倍于工作(维持)电压,(电压值的大小和灯管的长度和直径有关)冷阴极荧光灯在开始启动时,当电压还没有达到触发值(1200~1600V)时,灯管呈正电阻(数兆欧),一旦达到触发值,灯管内部产生电离放电产生电流,此时电流增加,灯管两端电压下降呈负阻特性图2,所以冷阴极荧光灯触发点亮后,在电路上必须有限流装置,把灯管工作电流限制在一个额定值上,否则会因为电流过大烧毁灯管,电流过小点亮又难以维持。
图1图2
图2是冷阴极荧光灯的电压电流特性,垂直轴表示流过灯管电流,水平轴表示灯管两端电压。
在灯管开始点亮之前,水平轴上灯管两端的电压上升,当还未达到灯管触发电压时(1200V~1600V以下),灯管电流基本没有,当达到触发电压时(1200V~1600V)灯管内部汞原子电离,产生电流,灯管点亮由于电流上升,灯管两端电压急剧下降,并维持在400V~600V左右,此时由于外电路的限流作用,灯管两端的电压基本上维持在触发电压的大约三分之一处,灯管两端电压的小幅度变化会引起灯管电流较大幅度的变化(电流大幅度的变化,直接影响灯管的使用寿命)。
点亮灯管后维持灯管两端电压的稳定性是重要的。
冷阴极荧光灯在良好的供电环境下,寿命可以达到25000~50000小时(近似于CRT寿命),即灯管供电的频率、波形、触发电压、维持电压、灯管电流要符合该灯管的特性。
对于有亮度控制的灯管,波形要求更加严格,否则灯管寿命大大缩短(有些屏的背光灯管和液晶屏是做成一个整体是不可换的,灯管损坏,屏体整体也成废品)。
冷阴极荧光灯要求高效率、长寿命,那么对其灯管的供电、激励部分是要符合灯管的特性,供电源必须是交流正弦波,频率为40K~60K左右,触发电压在1200~1600V,维持电压约是触发电压的三分之一点(由灯管的长度和直径决定),由于每一只灯管的电压/电流特性并不是完全一样,灯管不能直接并联使用(串联应用虽然可以点亮,由于特性的差异造成相串联的灯管的亮度不同,会造成整屏亮度不均匀),所以在多灯管液晶屏中,每一只灯管均配单独一只高压变压器,图3是三星32寸屏的背光灯高压驱动板,该屏有16只灯管,其驱动板上就有16个高压输出变压器,图4是高压变压器。
图5是三星32寸液晶平背光灯高压驱动电路的信号流程及简单框图。
目前背光灯高压驱动板和液晶屏是配套出厂的,不同型号、尺寸的液晶屏其高压驱动板是不可互换的。
图3
图4
关于冷阴极荧光灯的亮度控制;液晶电视也应该和CRT电视一样能进行亮度控制,但是冷阴极荧光灯因为其特有的非线性特性,用普通的依靠改变电压控制电流的亮度控制方法,有一定的困难,虽然发光亮度的增大可以通过增大灯管的电流来实现,但增大电流改变亮度的作用是有限的,且过大的电流会使灯管的电极受到损害,进而导致灯管的寿命缩短,同样减小电流控制亮度减小的作用也极其有限,并且电流减小会使放电难以维持导致熄灭,灯管弱电流放电对灯管的寿命也是不利的。
所以目前冷阴极荧光灯的亮度控制均采用脉冲调光,具体方法是;用30~200Hz的低频PWM脉冲波(PWM脉冲波的宽度受控于CPU)对施加于冷阴极荧光灯管上的连续振荡高压进行调制,使连续振荡波变成断续振荡波,从而达到控制亮度的目的,其控制原理是;断续的在极短间内停止对冷阴极荧光灯供电,由于停止时间极短,不足以使灯管的电离状态消失,但是其辐射的紫外线强度下降,管壁上的荧光粉的激发量减小,亮度也下降,只要控制PWM的脉冲的占空比,就可以改变灯管在一个导通/关闭周期的时间比,从而达到控制灯管平均亮度的目的见图5中,调制器输出的脉冲串信号,目前的技术可以达到400:
1或更高的调光控制。
但是,由于此种控制方式是反复的启动、截止灯管,即在每一个启动、关闭周期都会造成灯管高启动电压及电流的突变的冲击,这对于气体放电灯的电极而言是极为不利的,会大大的缩短灯管的寿命,为了解决这一问题,目前均采用一种“柔性”启动技术,即对调光脉冲的包络的前沿和后沿,采用连续线性增幅和降幅的处理(前沿是一个逐步增大的过程,在后沿是一个逐步减小的过程)图6,这样经过线性变幅处理后的高压脉冲波,再作用于灯管上,就不会对灯管造成损伤,也不会影响灯管的寿命。
为了防止断续时间过长灯管熄灭,PWM脉冲信号的频率控制在50~200Hz范围内。
脉冲调光方法控制亮度的范围比较大,只要波形符合要求,对灯管的寿命没有影响。
目前具有亮度控制笔记本电脑的液晶屏的亮度控制,均采用此方法。
但是具有脉冲调光的背光灯驱动电路比较复杂,技术要求高。
对于多灯管屏的亮度控制,如果同时间断灯管的瞬间供电,PWM的间断频率会和液晶屏的刷新频率差拍,液晶屏会出现滚道干扰、闪烁、亮度不均匀等现象,为了防止这种现象产生,加于每个灯管的断续脉冲波相位上有所差异,即对灯管来说,短暂停止供电在多根灯管中,不是同时断电、供电,必须是交替轮流断电、供电。
多灯管系统一般把灯管分为4组,供电系统的PWM脉冲有4个通道,输出4路经过PWM调制的高频脉冲波,每个通道向一组灯管供电,通道之间输出的PWM调制脉冲,依次移相900,这样4组灯管则达到轮流断电、供电,使亮度更均匀,干扰最小,三星32寸液晶屏有16根灯管,分为4组,每组4根灯管(24根灯管液晶屏的就每组6根灯管)。
图5
图6图7
功率放大器和输出电路;功率放大器的作用是把调制器调制的高频断续脉冲波,经过放大到足够激励点亮冷阴极荧光灯管点亮的功率。
输出电路是利用变压器对功率放大后的激励信号进一步的升压以达到激励并点亮灯管电压,输出电路还有一重要的作用,即是把功率放大输出的方波转化为冷阴极荧光灯管工作必须的正弦波。
功率放大器在目前各厂家生产的背光灯高压驱动电路中均采用MOSFET组成的功率输出电路,电路形式有所不同,总的不外以下四种形式;
1、全桥架构;
全桥架构功率放大电路图8,放大元件由4只MOSFET(两只N沟道及两只P沟道)组成,应用的供电电压范围宽(6V~24V)最适合在低电源电压的场合应用。
适合低电源电压的设备如笔记本电脑等低压供电的设备。
2、半桥架构;
半桥架构功率放大电路如图9;和全桥架构相比,节省了两只功率放大管(一只N沟道和一只P沟道的MOSFET)。
在相同的输出功率和负载阻抗情况下,供电电压比全桥架构要提高一倍(电流为全桥架构的一半),用在供电电压较高的设备上(大于12V)。
以上两种架构的功率输出电路的每一个桥臂的放大元件是N沟道和P沟道MOSFET组成的串连推挽功率输出电路。
3、推挽架构;
这种架构的功率放大电路如图10,只用两只廉价的低导通电阻的N沟道MOSFET,使电路的效率更高(P沟道的MOSFET价格高、由于导通电阻大,电路的效率较低),对于MOSFET的筛选要求也低,电路所用元件也少,有利于最大限度降低成本。
该推挽架构对电源的稳定要求较高(如稳定的12V供电),对于如笔记本电脑的电池电压在使用中逐渐下降的设备,不易采用此推挽架构的电路。
4、Royer架构(自激振荡);
自激振荡器方式图11,不需要激励控制电路,主要两只功率管和变压器加反馈电路组成的最简单应用方式,是在不需要严格控制灯频和亮度的设计中。
由于Royer架构是自激式设计,受元件参数偏差的影响,很难严格控制振荡频率和输出电压的稳定,而这两者都会直接影响灯的亮度、使用寿命。
并且无法对液晶屏进行亮度控制,一般应用在廉价的节能灯上,正因为此,Royer架构一般不被用于液晶显示屏上。
尽管它是本文所述四种架构中最简单、廉价的。
图8全桥架构图9半桥架构
图10推挽架构图11Royer架构
输出电路及正弦波的形成;
背光板驱动电路中前级(振荡器和调制器)和功率输出部分,基本上是工作在开关状态(开关状态工作效率高、输出功率大),输出基本也是开关信号,前面已经提到冷阴极荧光灯的最佳供电电压波形是正弦波,为了保证背光灯管工作在最佳状态(对于发光亮度及寿命是非常重要的),还必须把功率输出级输出的信号变换为正弦波。
正弦波的转换;
整个背光灯驱动电路我们可以把它看成是一个它激振荡器。
作为一个振荡器输出什么波型,完全取决于振荡器的输出电路特性,输出电路是非谐振电路,输出是脉冲波(输出特性是纯容性输出锯齿波,输出特性是纯阻性输出方波,输出特性是纯感性输出微分波为主),输出电路如果是谐振电路输出必然是正弦波。
我们只要把背光灯高压驱动输出电路,做成一个谐振电路就可以输出正弦波,如果谐振电路的谐振频率就是振荡器的振荡频率,那么该背光灯驱动电路,就能做到最大限度的高效的把能量传输给灯管。
输出电路的处理方式是;在高压变压器的输出端(输入端也可以)和灯管连接处串连一只电容器C图12,电容器C和输出高压变压器输出端L及负载R(灯管)组成了一个低Q值的串连谐振电路。
等效电路图13。
在图中对于功率输出信号的频率作用于电感L和电容C,来说,在此频率下,当电感L的感抗XL等于电容C的容抗XC时,电路产生谐振,在此谐振电路中即产生谐振,由于组成是串连谐振电路,所以谐振时;电流达到最大值,此最大电流即是流过冷阴极荧光灯管的电流。
其谐振时达到的最大值,也意味着功率输出的能量,最大限度的输送给了灯管,由于灯管也串连在电路中的一部分,形成了串连谐振电路的电阻份量,所以该谐振电路是低Q值电路,即使是振荡频率略有偏差,也能保证能量的传输。
前面介绍过,在灯管点亮后的负阻特性,必须有限流的作用,此电路中电容器C的容抗,正好起到限流的左右,此种方式限流能量损耗极小,此输出电路极为巧妙。
但是为了保证电容C和电感L的谐振频率就是振荡器的振荡频率,又要使电容C的容抗XC的大小基本正好是灯管的限流值,电路的精确设计是至关重要的。
在维修中,电容C是比较容易损坏的元件,如有损坏,一定要用和原来一样的电容代换,否则其性能会大幅下降,甚至不能使用。
图12
图图13
以上第一部分主要介绍冷阴极荧光灯的构造、特性。
工作时对驱动电路的要求,特别是具有亮度控制的冷阴极荧光灯及多灯管液晶屏系统灯管的驱动供电要求作了介绍。
下一部分;是冷阴极荧光灯高压驱动电路的电路原理,故障分析,以三星屏为例。
内容;
一、电路组成
二、工作原理
三、保护电路
四、检修方法及注意事项
五、BD9884FV详细分析
海信TLM-3277液晶电视采用韩国三星屏,该屏内置冷阴极荧光灯管16只。
冷阴极荧光灯驱动电路板,随屏配套。
该冷阴极荧光灯驱动电路由两块BD9884及8组全桥架构功率输出电路组成,功率输出采用8SPM3MOSFETN沟道、P沟道模块。
两只8SPM3模块及输出高压变压器组成一个桥式输出架构。
变压器有初级绕组XX接功率输出模块,次级高压绕组XX接冷阴极荧光灯管次级低压绕组XX为作为取样电压送往BD9884的电压检测部分。
BD9884有两路激励输出
输出一路
一路,每一路激励输出向两个全桥功率电路提供激励信号,每一组全桥功率输出向两个高压变压器驱动电压(点亮两只冷阴极荧光灯管),这样;每一块BD9884可以驱动8只灯管,两只BD9884共驱动16只灯管。
在两块集成电路的4路输出激励信号中,在进行亮度控制时,是采用PWM方式控制,4路PWM脉冲,每路之间的相位差为900
海信TLM32XX系列大屏幕液晶电视背光灯电路原理及分析
海信32寸液晶电视主要采用韩国三星屏和LG屏,以下把三星屏背光驱动电路进行介绍;
在本文的第一部分,介绍了背光灯管及驱动电路,并对驱动电路的要求进行了较详细的叙述,下面以韩国三星屏为例,对电路的组成形式、工作原理、控制方式进行介绍。
背光灯高压驱动电路在液晶电视机中,是一个单独工作的受控于CPU的电路组件,其主要作用是点亮液晶屏内的背光灯管并受CPU控制对其能进行启动、停止(on/off)及亮度控制。
由于液晶屏的尺寸、灯管的数量、点亮电压、启动特性均不相同,背光灯高压驱动电路其输出特性必须适配于所驱动的液晶屏,所以背光灯高压驱动电路组件是随屏配套提供,在同一尺寸的液晶屏其型号不同,其背光灯高压驱动电路组件是不能互换的。
背光灯高压驱动电路组件部分主要由;振荡器、调制器、功率输出电路及保护检测电路组成,在三星32寸液晶屏中,背光灯高压驱动电路中除功率输出部分和检测保护部分外,振荡器、调制器及控制部分采用一块ROHM(罗姆)公司的单片集成电路BD9884FV来完成(图1虚线框内),功率输出采用N沟道和P沟道组合的MOSFET功率模块SP8M3来完成,保护检测由集成电路10393完成,输出电路有高压变压器、谐振电容及背光灯管(CCFL)完成(并有输出电压、输出电流取样电路),以上这几部份安装在一块电路板上,基本电路框图及工作过程如图1所示。
图1
一、信号流程及工作原理;
图1中CPU部分送来的控制信号控制振荡器开始工作,产生频率约100KHz的振荡信号,送入调制器内部和CPU部分送来的PWM亮度控制信号进行调制,调制后输出断续的100KHz激励振荡信号送入功率输出电路,输出高压并点亮背光灯管。
PWM调制信号改变输出高压脉冲的宽度达到改变亮度的目的,背光灯管点亮后L2、C及CCFL的组合又使高压波形正弦形变化(低Q值串联谐振),电容C的容抗及L2的感抗又起到背光灯管的限流作用。
串联在背光灯管上的取样电阻R上的压降作为背光灯管的工作状态取样电压输送到保护检测电路(由10393组成),高压变压器L3的输出,作为输出电压取样信号也输送到保护检测电路,当输出电压及背光灯管工作电流出现异常,保护检测电路控制调制器停止输出。
由于三星32寸屏是采用16只背光灯管,又由于背光灯管不能并联和串联应用,所以必须每个背光灯管配用一个高压变压器,此16个高压变压器要有相适配的激励电路来驱动。
图2A是三星32寸屏背光灯高压驱动组件图片,图2B是主要元件标注。
图2A
图2B
【郝铭原创作品转载请注明出处】
二、集成电路BD9884FV及MOS功率输出模块SP8M3介绍
1、BD9884FV
BD9884FV是ROHM(罗姆)公司专门为液晶显示屏背光灯高压驱动电路设计的系列集成电路之一(适合不同的屏及电路形式有BD9882~BD9886系列选用)。
该集成电路支持多灯管大屏幕液晶显示器的背光灯高压驱动电路,每块BD9884FV可支持到8只灯管驱动。
BD9884特点;
1)2通道输出半桥拓扑结构(电路上改变即可用于全桥结构)
2)内置灯管电流、电压反馈检测控制电路
3)支持多灯管方案
4)软启动功能
5)具有时间锁存短路保护
6)具有欠压和过压保护
7)具有脉冲(PWM)输入和直流输入两种亮度控制方式
8)具有待机控制功能(由STB脚实现)
9)供电电压5~11V
10)具有内置同步移相通讯接口,支持多IC并联使用,实现大屏幕多灯管驱动(16根灯管)
11)SS0P-B28封装(表面贴片)
BD9884FV外形如图3所示内部框图如图4所示
各引脚的功能及实测电压值见表1(用数字表测)
图3
图4
表1
【郝铭原创作品请勿转载请勿链接】
2、SP8M3
SP8M3是N沟道+P沟道组合功率放大MOSFET模块具有体积小、功率大、导通电阻小、对称性好、无需散热器的贴片元件,Vds为30VID最大达到7A,内部电路及外形图5所示。
图5SP8M3内部电路及外形
图6SP8M3内部N沟道及P沟道参数
三、BD9884FV基本电路介绍
三星32寸液晶屏采用了两块BD9884FV完成对16灯管背光灯的激励驱动,电路比较
复杂,为了便于对三星32寸液晶屏16灯管背光灯高压驱动电路的理解,先介绍图7所示的
采用一块BD9884FV构成的两灯管驱动电路的基本方案。
图7
BD9884FV是具有两通道输出的驱动集成电路,图7方案是两个通道分别点亮各自一只背光灯管的激励驱动原理图,两个通道均同时受16脚输入的on/off启动信号及1脚输入的PWM亮度控制信号的控制。
由26、27脚输出第一通道激励信号,23、24脚输出第二通道激励信号
第一通道高压激励驱动;
BD9884FV的26、27脚输出激励信号及Q1、Q2、T1、C1、CCFL1、R1组成第一通道激励驱动电路,18脚是该通道背光灯管工作状态取样反馈输入端,10脚是输出高压取样反馈输入端,起到输出电压异常和灯管工作异常时即进入停止激励输出的保护作用。
电路特点;
Q1、Q2为SP8M3功率输出模块,组成了全桥架构功率输出模式,等效电路图8所示(BD9884FV的设计是支持半桥架构功率输出模式,在本电路中增加了Q507、Q508电路,使其具有支持全桥架构功率输出的功能),输出电路由T1、C1、CCFL1及R1组成一个低Q值串联谐振电路。
图8
工作过程;
在液晶电视开机后24V电源即加于背光灯驱动电路板上,该电压直接加于Q1~Q4功率输出模块,并经过降压稳压为6V后加到BD9884FV的28脚作为VCC电压,此时CPU送来开机on/off信号进入16脚,BD9884FV内部振荡器开始工作产生100KHz方波信号送入调制器并和CPU来经过BD9884FV1脚输入的PWM亮度控制信号进行调制、放大后由26、27脚输出激励信号加到全桥架构功率输出电路Q1、Q2的两只N沟道MOS管的栅极(G1)上,从图8等效电路中可以看到Q1、Q2中的四只MOS管组成了全桥架构的四个桥臂,由26、27脚输出激励信号,分别加到Q1和Q1功率模块的N沟道MOS管上,使其轮流导通,放大后的激励信号则经过L1流通,经过TI升压加到背光灯管并点亮灯管,TI的L3、C1和CCFL1组成一个低Q值的串联谐振电路,谐振频率和激励振荡频率相同时,输出波形进行了正弦化的矫正,在CCFL1灯管点亮后,其T1的感抗和C1的容抗起到了灯管限流作用。
R1为CCFL1灯管工作电流取样电阻,该电压反映了灯管的工作状态是否正常工作,当灯管工作异常,灯管电流产生变化在R1上产生的压降Ui也相应变化,该灯管工作电流取样电压Ui反馈到BD9884FV的18脚,控制振荡激励电路停止工作(在多灯管的液晶屏中当某一只灯管出现故障或启动性能有差异即会出现屏不能启动点亮的故障)。
T1的L2为输出电压过压、欠压取样绕组,取样电压Uv反馈到振荡、控制集成电路BD9884FV的10脚,该取样电压Uv的变化反应点亮灯管高压输出的正常与否,当电路出现故障引起该电压出现异常时,由10脚内部的比较控制电路,控制振荡电路停止工作。
高压变压器外形及接线图如图9所示。
图9
第二通道高压激励驱动;
23、24脚输出激励Q3、Q4、T2、C2、CCFL2、R2组成第二路通道系统,工作原理和第一路通道相同17脚为第二路通道的灯管电流取样输入,13脚为输出电压取样输入。
四、采用两块BD9884FV的16背光灯管驱动方案
三星32寸液晶屏的高压驱动电路采用了两只BD9884FV支持16只背光灯管,每只BD9884FV支持8只背光灯管,如图10所示。
在图10中可以看到BD9884FV的26、27脚输出通道同时激励两组全桥架构功率输出电路;Q1、Q2为一组,Q3、Q4为一组,这两组的激励输入端并联后接于.BD9884FV的26、27脚,一个BD9884FV输出激励通道支持两组率输出电路。
再看图中由Q1Q2组成的一路输出电路在输出端连接两只高压输出变压器,并支持两只背光灯管,这样每一路通道即可以支持4只背光灯管,一块BD9884FV的两路通道即可以完成支持8只灯管。
图10
16只背光灯管32寸液晶屏采用如图11所示的方案;用两块ND9884FV并联应用,采用一套控制信号控制,支持16只背光灯管点亮。
在两块BD9884FV16灯管支持方案中,要求两块BD9884FV的四通道输出激励输出信号的PWM调制脉冲,依次移相900,这样4组灯管则达到轮流断电、供电,使亮度更均匀,干扰最小,为了达到此目的,两块BD9884FV的通讯连接移相控制由在两块BD9884FV的2、3、4、5、6之间进行,使四通道输出的PWM调制信号的相位关系如图12所示。
未完待续保护电路及故障维修
图11
图12
TLM3277液晶电视背光灯驱动稳定保护电路工作原理
背光灯驱动电路向背光灯管供电并点亮背光灯管,要求液晶屏整个屏幕亮度均匀、稳定。
在实际应用中,由于电源、灯管特性、温度等原因等的影响会造成发光亮度不稳定,此时要求背光灯高压驱动电路要有自动稳压、稳流功能。
又由于液晶屏是多灯管点亮,当某只背光灯管异常损坏或者性能不良,该灯管不亮或亮度极低,液晶屏即出现亮度不均匀甚至出现暗区,这是不能允许的,此时要求背光灯高压驱动电路能进行保护性关机。
为了解决上述问题,在背光灯高压驱动电路上设置了;自动检测输出电压、自动检测灯管电流,并稳定电压、电流的自动检测控制电路。
当某只背光灯管异常损坏或者性能不良出现暗区时,有故障的灯管会无电流或电流极小,此时背光灯高压驱动电路设置检测控制电路,检测灯管异常电流,并控制整个背光灯高压驱动电路停止工作(黑屏),等待检修的。
图1所示是该背光灯驱动电路的电压、电流稳定控制及自动检测保护电路的示意图。
【郝铭原创作品请勿转载请勿链接】
图中,高压变压器的L3是输出电压的取样绕组、电阻R是灯管电流取样电阻。
L3的取样电压经过电压反馈电路加到BD9884FV的电压反馈输