Laser Thermal Annealing Enabling ultralow thermal budget processes.docx

上传人:b****5 文档编号:3565506 上传时间:2022-11-23 格式:DOCX 页数:20 大小:808.47KB
下载 相关 举报
Laser Thermal Annealing Enabling ultralow thermal budget processes.docx_第1页
第1页 / 共20页
Laser Thermal Annealing Enabling ultralow thermal budget processes.docx_第2页
第2页 / 共20页
Laser Thermal Annealing Enabling ultralow thermal budget processes.docx_第3页
第3页 / 共20页
Laser Thermal Annealing Enabling ultralow thermal budget processes.docx_第4页
第4页 / 共20页
Laser Thermal Annealing Enabling ultralow thermal budget processes.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

Laser Thermal Annealing Enabling ultralow thermal budget processes.docx

《Laser Thermal Annealing Enabling ultralow thermal budget processes.docx》由会员分享,可在线阅读,更多相关《Laser Thermal Annealing Enabling ultralow thermal budget processes.docx(20页珍藏版)》请在冰豆网上搜索。

Laser Thermal Annealing Enabling ultralow thermal budget processes.docx

LaserThermalAnnealingEnablingultralowthermalbudgetprocesses

LaserThermalAnnealing:

Enablingultra-lowthermalbudgetprocessesfor3Djunctionsformationanddevices

Annealingof3Darchitecturesisoneofthemajorchallengesforcurrentandnextgenerationdevicesforvariousapplicationsrangingfromsensors,microprocessorsorhighdensitymemories.OneofthemostpromisingsolutionsisLaserThermalAnnealing(LTA),anultrafastandlowthermalbudgetprocessalreadyadoptedinproductionforpassivationofBackSideIlluminatedCMOSImagingSensors(CIS)andPowerDiodesandTransistors(IGBT).Thehightemperatureannealingrequired(>;1400°C)needstoberestrainedtoverythinlayerswhilekeepinglowtemperatureofunderlyingfragilelayersanddevices.Toachievethat,oneneedstouseauniqueultrafastannealingduration(subμsec)andaproperLaserwavelength.Thisenablestoreachmetastablethermalprocesses,locking-intheelectricalsurfacepropertiesofthesemiconductorwhilenotdamagingburieddevices.Wepresentareviewofthosenewprocessesincludingrecentdevelopmentinemergingmemoryapplicationswhere3Dverticalstackoffunctionallayersofdevicesisrealized.

Thispaperappearsin:

JunctionTechnology(IWJT),201212thInternationalWorkshopon,IssueDate:

14-15May2012,Writtenby:

Venturini,Julien

©2012IEEE

Introduction

The“MorethanMoore”lawdriving3Dintegrationofdevicesisshapedbytwomajorkeyrequirements:

Firstly,theneedtoreachhigherintrinsicdeviceperformancesbydesigningverticallydiscreteorintegrateddevices;secondlytheneedtomanagemoreinformationflowintimeandspace,wherereducingplanardevicesizeislimitedbyphysicalandcostbarriersconsequentlydrivingtheneedtostackdevicelayersvertically.Forthosetwobasicrequirementsthedimensionsof3Dstructureatstaketypicallyrangefromfewnmto10thofμm .Manufacturingofthosestructuresusingstandardorexistingmanufacturingprocessflowsleadstoroadblocksforthermalorotherprocessincompatibilitiesreasons,orincreasessignificantlyandnonlinearlymanufacturingcost.Thosechallengesareevenharsherwhenonehastodealwithintegratinganincreasednumberofmaterialsfromtheperiodictableandwithincreasedcomplexityinthedesignanddevicestructure.Overcomingthosechallengespushesdevicemanufacturerstoexploreandstudydifferentdesignandprocessflowswhicharenotalldoomedtosuccess.

Moreparticularly,concerningthespecificthermalprocessintegrationchallenge,oneneedstoavoiddamaginglayersalreadymanufacturedunderneath,whichtranslatesintocontrollingverticallythetemperaturegradientandthetotalthermalbudgetateachannealingstep.Subpsec “timeattemperature”isamustwhenonewantstoreachsuchpm scaletemperaturegradient.Secondly,tocoupleefficientlythelaserlightwiththematerialunderneath,oneneedstoannealselectivelythemateriallayersin2D.Lastbutnotleast,tomaximizemanufacturingyieldonerequiresannealingveryuniformlyanareatothescaleofatleastadevice/die.Ageneraltrendofnewannealingtoolspecificationrequirementsissummarizedinfigure1.

Pulsedlaserannealingtechnologiesaretodaytheonlyoneabletoanswertothoseneeds.OneofthemostpromisingsolutionalreadyimplementedinproductioninSemiconductorFabsisLaserThermalAnnealing(LTA),anultrafastandlowthermalbudgetprocessinthesubμsec range.

Figure1Semiconductorindustrytrendsandthermalprocessequipmentimplications

ViewAll|Next

AftershowingthemainassetsandspecificationsofLTAtechnology,wepresenttheLTAprocessforthecontactformationstepofPowerTransistors(IGBT)andforthepassivationstepofBackSideIlluminatedCMOSImagingSensors(BSI-CIS).Wealsopresentrecentdevelopmentsinverticallystackedfunctionallayersofdeviceincreasingthedensityperunitareaofmemories.Whilethetwofirstapplicationsarecallingthecapabilitytothindownwafersandformthedeviceitselfintheverticalbulkofthewaferattheμm range,thememoryapplicationdealswithnmrangelayerprocesses.Inallcases,thehightemperatureannealing(>1400°C)needstoberestrainedtoverythinlayerswhilekeepinglowtemperature(<300°C)ofunderlyingdevicelayersincludingfragilemetalsorbondinglayers.Additionally,tooptimizesuchultrafastannealingprocesses,itisrequiredtopredictadequatelythetemperaturegradientinthestackbyusingsophisticatedsimulationtoolsnotyetavailableinTCADtool.Someofthosesimulationcalculationswillalsobepresentedinthefirstsectionofthispaper.

o1.Introduction

o2.TheLTAtechnology

o3.LTAprocessforbacksidepassivationofthinnedwafers

o4.3DMemories-PINDiodeLTAprocess

o5.ConclusionsandSummary

SECTION2.

TheLTAtechnology

Whenonewantstoannealwithapulsedlasertoreach2Dand3Dspatialprocessselectivityandhighprocessuniformity,asseeninfigure1,thewavelengthandthepulsedurationarethemainlasermetricstobecontrolledandadjustedwhileauniquelaserbeamisrequiredtoannealasingledieinasingleshot.

 A-LaserWavelength

Forthewavelength,thefigure2showstheabsorptiondepthinsiliconofdifferenttypicalindustriallaserwavelength.Weseethatinordertoreachtheproperselectivitytoenableprocessesatthenanometerscale,theUVwavelengthspectrumisrequired.

Figure2Absorptiondepthversuslaserwavelengthincrystallinesilicon

Previous|ViewAll|Next

 B-PulseDuration

Concerningthepulseduration,simulationsarerequiredtopredictthemeltandrecrystallizationaswellasthetemperaturedynamics.Beingultrafastisessentialwhileonesneedstocarenotreachingdegreeofsuperheatingwhichwoulddamagethelayertobeannealedorwouldnotallowaproperanddefect-lessrecrystallization.Acomparisonof2differentpulsedurationdynamicsisshownonfigure3for308nmExcimerlasers.Onecanwitnessthatsuperheatingoftheliquidphaseisoccurringinthecaseofthe25nspulse,leadingtocrystallizationvelocitiesliabletoleavealargernumberofdefect[1].Atradeoffisclearlyappearinginthe100to300nsdurationinordertobothreachametastableadiabaticregimeenablinghighactivationofdopantsandathermaldynamicavoidingsurfacedamageanddefectgeneration.

Figure3Simulationshowingthetemperaturedynamicatthesiliconsurfacewith2differentpulsedurationat308nmwavelength.Laserenergydensitiesareadjustedtoreacha50nmjunctionformation

Previous|ViewAll|Next

Simulationofthetemperaturegradientinthedepthofthesiliconisshowninfigure4.InthisexampleofatypicalBSI-CISstructure,thetemperatureintheburiedmetallinesarebelowdamagethresholdwhilesurfacetemperatureisreachingmeltingphasetoformanultra-shallowjunction.

Figure4Temperatureverticalgradientina3DBSI-CISstructure

Previous|ViewAll|Next

 C-Processuniformity-theFullDeviceExposure(FDE)technology

Inordertofulfilltherequirementsforauniformprocess,theshotareahastobechangedaccordingtothedevicegeometry.Asshownpreviouslyusingmicro-scalesheetresistancemeasurements[2],thepresenceoftheshotborderoroverlapwithintheareaofinterestmayinducesignificantnon-uniformitiesinjunctionproperties.Sincethejunctionproperties(thickness,activationrate)mayinfluencecarrierrecombination,theyshouldbecarefullycontrolled.Figure5showsanexampleoftheinfluenceofthelaserbeamoverlaponsensordevices.

Figure5SensorsignalintensityprofilesusingLTAwith(solidline)andwithout(dashedline)overlapinthesensorarea

Previous|ViewAll|Next

Asaconsequence,thedeviceshouldbeannealedwithinaSingleShotArea(SSA).ThisSSAisdefinedastheareawhichisguaranteedtobeirradiatedwithinthetophatofthelaserbeam(Fig.6)andonlyonce,takingalsointoaccountwithinwaferandwafertowaferpositioningaccuracy.TheSSAisthuscalculatedasafunctionofthedevicegeometry.

Figure6Asnapshotofa5.6×7.9 mm rectanglelaserbeamshowinguniformityoverthedeviceinthexandydirection

Previous|ViewAll|Next

Anexampleofa-Siwafersannealedwitha13×16mm 2  fieldofexposureisshowninfigure7.Atlaserenergydensitiescorrespondingtothetophatareaofthebeam,shot-to-shotdistancesareclosetotypicalscribelinewidths.Thus,largedevicescanbeprocesswithsuchasystem.Itistobenotedthatwithsuchlargesizes,dependingondevicedesign,oneorseveraldiescouldbeannealedwithineachSSA,thusoptimizingthethroughputofthesystem.

Figure7Shotmapona-SiwaferforarectangularSingleShotArea(SSA)of13×16 mm 2  

Previous|ViewAll|Next

Otherstrategiestoachieveuniformityfordeviceslargerthanthemaximumequipmentfieldofexposurearealsoexplored[2]–[3]andshowninfigure8.Thisconsistforinstancetoplaywithmultipleshotsandoverlapratiobetweentwoadjacentlaserpulsesoverasingledevice.Thisapproachisobviouslymoreadaptedtolowthroughputmanufacturingandhighaddedvaluelargeareadevices.Figure8showstheeffectofmultiplepulseandoverlaprationadjustmentforagivenbeamgeometry.

Figure8.Junctionprocessuniformityfromμscale sheetresistance(20 μm stepR s  scansintheoverlapregion)with1pulse(triangles)and3pulses(circles).[2]

Previous|ViewAll|Next

o1.Introduction

o2.TheLTAtechnology

o3.LTAprocessforbacksidepassivationofthinnedwafers

o4.3DMemories-PINDiodeLTAprocess

o5.ConclusionsandSummary

SECTION3.

LTAprocessforbacksidepassivationofthinnedwafers

 A-Discretepo

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 动态背景

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1