Laser Thermal Annealing Enabling ultralow thermal budget processes.docx
《Laser Thermal Annealing Enabling ultralow thermal budget processes.docx》由会员分享,可在线阅读,更多相关《Laser Thermal Annealing Enabling ultralow thermal budget processes.docx(20页珍藏版)》请在冰豆网上搜索。
LaserThermalAnnealingEnablingultralowthermalbudgetprocesses
LaserThermalAnnealing:
Enablingultra-lowthermalbudgetprocessesfor3Djunctionsformationanddevices
Annealingof3Darchitecturesisoneofthemajorchallengesforcurrentandnextgenerationdevicesforvariousapplicationsrangingfromsensors,microprocessorsorhighdensitymemories.OneofthemostpromisingsolutionsisLaserThermalAnnealing(LTA),anultrafastandlowthermalbudgetprocessalreadyadoptedinproductionforpassivationofBackSideIlluminatedCMOSImagingSensors(CIS)andPowerDiodesandTransistors(IGBT).Thehightemperatureannealingrequired(>;1400°C)needstoberestrainedtoverythinlayerswhilekeepinglowtemperatureofunderlyingfragilelayersanddevices.Toachievethat,oneneedstouseauniqueultrafastannealingduration(subμsec)andaproperLaserwavelength.Thisenablestoreachmetastablethermalprocesses,locking-intheelectricalsurfacepropertiesofthesemiconductorwhilenotdamagingburieddevices.Wepresentareviewofthosenewprocessesincludingrecentdevelopmentinemergingmemoryapplicationswhere3Dverticalstackoffunctionallayersofdevicesisrealized.
Thispaperappearsin:
JunctionTechnology(IWJT),201212thInternationalWorkshopon,IssueDate:
14-15May2012,Writtenby:
Venturini,Julien
©2012IEEE
Introduction
The“MorethanMoore”lawdriving3Dintegrationofdevicesisshapedbytwomajorkeyrequirements:
Firstly,theneedtoreachhigherintrinsicdeviceperformancesbydesigningverticallydiscreteorintegrateddevices;secondlytheneedtomanagemoreinformationflowintimeandspace,wherereducingplanardevicesizeislimitedbyphysicalandcostbarriersconsequentlydrivingtheneedtostackdevicelayersvertically.Forthosetwobasicrequirementsthedimensionsof3Dstructureatstaketypicallyrangefromfewnmto10thofμm .Manufacturingofthosestructuresusingstandardorexistingmanufacturingprocessflowsleadstoroadblocksforthermalorotherprocessincompatibilitiesreasons,orincreasessignificantlyandnonlinearlymanufacturingcost.Thosechallengesareevenharsherwhenonehastodealwithintegratinganincreasednumberofmaterialsfromtheperiodictableandwithincreasedcomplexityinthedesignanddevicestructure.Overcomingthosechallengespushesdevicemanufacturerstoexploreandstudydifferentdesignandprocessflowswhicharenotalldoomedtosuccess.
Moreparticularly,concerningthespecificthermalprocessintegrationchallenge,oneneedstoavoiddamaginglayersalreadymanufacturedunderneath,whichtranslatesintocontrollingverticallythetemperaturegradientandthetotalthermalbudgetateachannealingstep.Subpsec “timeattemperature”isamustwhenonewantstoreachsuchpm scaletemperaturegradient.Secondly,tocoupleefficientlythelaserlightwiththematerialunderneath,oneneedstoannealselectivelythemateriallayersin2D.Lastbutnotleast,tomaximizemanufacturingyieldonerequiresannealingveryuniformlyanareatothescaleofatleastadevice/die.Ageneraltrendofnewannealingtoolspecificationrequirementsissummarizedinfigure1.
Pulsedlaserannealingtechnologiesaretodaytheonlyoneabletoanswertothoseneeds.OneofthemostpromisingsolutionalreadyimplementedinproductioninSemiconductorFabsisLaserThermalAnnealing(LTA),anultrafastandlowthermalbudgetprocessinthesubμsec range.
Figure1Semiconductorindustrytrendsandthermalprocessequipmentimplications
ViewAll|Next
AftershowingthemainassetsandspecificationsofLTAtechnology,wepresenttheLTAprocessforthecontactformationstepofPowerTransistors(IGBT)andforthepassivationstepofBackSideIlluminatedCMOSImagingSensors(BSI-CIS).Wealsopresentrecentdevelopmentsinverticallystackedfunctionallayersofdeviceincreasingthedensityperunitareaofmemories.Whilethetwofirstapplicationsarecallingthecapabilitytothindownwafersandformthedeviceitselfintheverticalbulkofthewaferattheμm range,thememoryapplicationdealswithnmrangelayerprocesses.Inallcases,thehightemperatureannealing(>1400°C)needstoberestrainedtoverythinlayerswhilekeepinglowtemperature(<300°C)ofunderlyingdevicelayersincludingfragilemetalsorbondinglayers.Additionally,tooptimizesuchultrafastannealingprocesses,itisrequiredtopredictadequatelythetemperaturegradientinthestackbyusingsophisticatedsimulationtoolsnotyetavailableinTCADtool.Someofthosesimulationcalculationswillalsobepresentedinthefirstsectionofthispaper.
∙
o1.Introduction
o2.TheLTAtechnology
o3.LTAprocessforbacksidepassivationofthinnedwafers
o4.3DMemories-PINDiodeLTAprocess
o5.ConclusionsandSummary
SECTION2.
TheLTAtechnology
Whenonewantstoannealwithapulsedlasertoreach2Dand3Dspatialprocessselectivityandhighprocessuniformity,asseeninfigure1,thewavelengthandthepulsedurationarethemainlasermetricstobecontrolledandadjustedwhileauniquelaserbeamisrequiredtoannealasingledieinasingleshot.
A-LaserWavelength
Forthewavelength,thefigure2showstheabsorptiondepthinsiliconofdifferenttypicalindustriallaserwavelength.Weseethatinordertoreachtheproperselectivitytoenableprocessesatthenanometerscale,theUVwavelengthspectrumisrequired.
Figure2Absorptiondepthversuslaserwavelengthincrystallinesilicon
Previous|ViewAll|Next
B-PulseDuration
Concerningthepulseduration,simulationsarerequiredtopredictthemeltandrecrystallizationaswellasthetemperaturedynamics.Beingultrafastisessentialwhileonesneedstocarenotreachingdegreeofsuperheatingwhichwoulddamagethelayertobeannealedorwouldnotallowaproperanddefect-lessrecrystallization.Acomparisonof2differentpulsedurationdynamicsisshownonfigure3for308nmExcimerlasers.Onecanwitnessthatsuperheatingoftheliquidphaseisoccurringinthecaseofthe25nspulse,leadingtocrystallizationvelocitiesliabletoleavealargernumberofdefect[1].Atradeoffisclearlyappearinginthe100to300nsdurationinordertobothreachametastableadiabaticregimeenablinghighactivationofdopantsandathermaldynamicavoidingsurfacedamageanddefectgeneration.
Figure3Simulationshowingthetemperaturedynamicatthesiliconsurfacewith2differentpulsedurationat308nmwavelength.Laserenergydensitiesareadjustedtoreacha50nmjunctionformation
Previous|ViewAll|Next
Simulationofthetemperaturegradientinthedepthofthesiliconisshowninfigure4.InthisexampleofatypicalBSI-CISstructure,thetemperatureintheburiedmetallinesarebelowdamagethresholdwhilesurfacetemperatureisreachingmeltingphasetoformanultra-shallowjunction.
Figure4Temperatureverticalgradientina3DBSI-CISstructure
Previous|ViewAll|Next
C-Processuniformity-theFullDeviceExposure(FDE)technology
Inordertofulfilltherequirementsforauniformprocess,theshotareahastobechangedaccordingtothedevicegeometry.Asshownpreviouslyusingmicro-scalesheetresistancemeasurements[2],thepresenceoftheshotborderoroverlapwithintheareaofinterestmayinducesignificantnon-uniformitiesinjunctionproperties.Sincethejunctionproperties(thickness,activationrate)mayinfluencecarrierrecombination,theyshouldbecarefullycontrolled.Figure5showsanexampleoftheinfluenceofthelaserbeamoverlaponsensordevices.
Figure5SensorsignalintensityprofilesusingLTAwith(solidline)andwithout(dashedline)overlapinthesensorarea
Previous|ViewAll|Next
Asaconsequence,thedeviceshouldbeannealedwithinaSingleShotArea(SSA).ThisSSAisdefinedastheareawhichisguaranteedtobeirradiatedwithinthetophatofthelaserbeam(Fig.6)andonlyonce,takingalsointoaccountwithinwaferandwafertowaferpositioningaccuracy.TheSSAisthuscalculatedasafunctionofthedevicegeometry.
Figure6Asnapshotofa5.6×7.9 mm rectanglelaserbeamshowinguniformityoverthedeviceinthexandydirection
Previous|ViewAll|Next
Anexampleofa-Siwafersannealedwitha13×16mm 2 fieldofexposureisshowninfigure7.Atlaserenergydensitiescorrespondingtothetophatareaofthebeam,shot-to-shotdistancesareclosetotypicalscribelinewidths.Thus,largedevicescanbeprocesswithsuchasystem.Itistobenotedthatwithsuchlargesizes,dependingondevicedesign,oneorseveraldiescouldbeannealedwithineachSSA,thusoptimizingthethroughputofthesystem.
Figure7Shotmapona-SiwaferforarectangularSingleShotArea(SSA)of13×16 mm 2
Previous|ViewAll|Next
Otherstrategiestoachieveuniformityfordeviceslargerthanthemaximumequipmentfieldofexposurearealsoexplored[2]–[3]andshowninfigure8.Thisconsistforinstancetoplaywithmultipleshotsandoverlapratiobetweentwoadjacentlaserpulsesoverasingledevice.Thisapproachisobviouslymoreadaptedtolowthroughputmanufacturingandhighaddedvaluelargeareadevices.Figure8showstheeffectofmultiplepulseandoverlaprationadjustmentforagivenbeamgeometry.
Figure8.Junctionprocessuniformityfromμscale sheetresistance(20 μm stepR s scansintheoverlapregion)with1pulse(triangles)and3pulses(circles).[2]
Previous|ViewAll|Next
∙
o1.Introduction
o2.TheLTAtechnology
o3.LTAprocessforbacksidepassivationofthinnedwafers
o4.3DMemories-PINDiodeLTAprocess
o5.ConclusionsandSummary
SECTION3.
LTAprocessforbacksidepassivationofthinnedwafers
A-Discretepo