材料力学性能教案.docx

上传人:b****5 文档编号:3548095 上传时间:2022-11-23 格式:DOCX 页数:13 大小:125.55KB
下载 相关 举报
材料力学性能教案.docx_第1页
第1页 / 共13页
材料力学性能教案.docx_第2页
第2页 / 共13页
材料力学性能教案.docx_第3页
第3页 / 共13页
材料力学性能教案.docx_第4页
第4页 / 共13页
材料力学性能教案.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

材料力学性能教案.docx

《材料力学性能教案.docx》由会员分享,可在线阅读,更多相关《材料力学性能教案.docx(13页珍藏版)》请在冰豆网上搜索。

材料力学性能教案.docx

材料力学性能教案

皖西学院教案

2013-2014学年第2学期

材料力学性能

授课

果专

业班级

材料科学与工程

呈2011级

李善

材化学

材料科

 

i

I

0

li

学期授课计划

课程类别专业核心总学分3

总学时48

本学期学时

B学周次

学时

学时分配

48

16

4/2

讲授

实验

上机

练习

讨论

考查

其他(习题)

48

6

教学目的和

基本要求

本课程是高等学校本科材料科学与工程类专业的一门重要的专业课程。

设置本课程的目的和教学目标是:

通过学习材料力学性能使学生能够从各种机械零

件或构件最常见的服役条件和失效现象出发,了解时效现象的微观机制,提出衡量材料

时效抗力的力学性能指标;掌握各种指标的物理概念、实用意义和测试方法;明确它们之间的相互关系;分析各种因素对力学性能指标的影响,为机械设计与制造过程中正确

选择和合理使用材料提供依据,为研制新材料、改进冷热加工新工艺,充分发挥材料性

能潜力指明方向,并为机械零件和构件的时效分析提供一定基础。

教学重点和

难点

重点:

单向静拉伸力学性能;冲击载荷下的力学性能;应力腐蚀和氢脆。

难点:

单向静拉伸力学性能;金属的断裂韧度;复合材料的力学性能。

选用教材

束德林主编《工程材料力学性能》,机械工业出版社2003

 

主要

参考资料

郑修麟主编《材料的力学性能,西北工大版,2001

冯端主编《金属物理学》(第一卷,科学出版社1999

匡震邦主编《材料的力学行为》,咼等教育出版社1998

张清纯主编《陶瓷的力学性能》,科学出版社1997吴人洁主编《复合材料》,天津大学出版社2000

备注

单元教案

授课主题(或早节)

第一章金属在单向静拉伸载荷下的力学性能学时10

教学内容纲要

1、掌握应力-应变曲线;2、弹性变形与弹性不完整性;3、塑性变形、屈服强度、

形变硬化;4、金属断裂、断裂强度、断裂理论及其应用

教学目的和要求

1、掌握应力-应变曲线;

2、理解弹性变形与弹性不完整性;

3、理解塑性变形、屈服强度、形变硬化;

4、理解金属断裂、断裂强度、断裂理论及其应用。

教学重点

应力-应变曲线

教学难点

塑性变形、屈服强度、形变硬化;金属断裂、断裂强度、断裂理论及其应用

授课方式

(请打2)

讲授

(2)讨论课()实验课()习题课()其他()

分教案

导言:

1静载是相对于交变载荷和高速载荷而言的。

2金属静载试验方法包括单向静拉伸试验、压缩、弯曲、扭转、剪切、硬度试验等,是工业上应用最广泛的金属力学性能试验方法。

3这些试验方法的特点是:

温度、应力状态和加载速率是确定的,并且常用标准试样进行试验(硬度试验除外)。

4通过静载力学性能试验可以揭示金属材料在静载荷作用下常见的三种

失效形式,即过量弹性变形、塑性变形和断裂。

5可以标定出金属材料的最基本的力学性能指标。

这些性能指标是机械设

计、制造、选材、工艺评定以及内外贸易订货的主要依据。

本章将讨论性能指标的定义、测试方法以及试验方法的意义特点等。

第一节拉伸力一伸长曲线和应力应变曲线

单向静拉伸试验是工业上应用最广泛的金属力学性能试验之一,原因是其测得的性能指标比较稳定,具有广泛的可比性。

一、光滑拉伸试样

光滑试样是相对于缺口试样和裂纹试样而言的。

1、采用光滑试样的目的:

光滑试样可保证试验材料承受单向拉应力,而缺口试样或裂纹试样将导致缺口或裂纹周围处于两向或三向应力状态。

2、试样的种类:

经常使用的光滑试样可分为:

圆柱形试样、板状试样和管状试样。

详见国家标准(GB/T228-2002金属材料室温拉伸试验方法)

3、光滑试样的组成

光滑拉伸试样由三部分组成:

工作部分:

是试样的中间部分,在取样和加工过程中应按照GB/T2975-1998《钢及钢产品力学性能试验取样位置及试样制备》、GB/T2649-1989《焊接接头机械性能试验取样方法》等相关标准执行,试样在原材料或机件中的取向、部位以及试样形状、精度、粗糙度和加工程序均按照标准执行。

过渡部分:

是工作部分向外过渡的部分,为减少应力集中,采用圆弧过渡的形式。

处理不好会在此断裂,导致试验失败(尤其是脆性材料)。

夹持部分:

这部分的作用是保持自身承载能力,不能断裂(其截面积大);

把载荷正确地传递到工作部分上去。

二、拉伸曲线及应力应变曲线

介绍试验机的种类、试样装夹、所用仪器和操作过程。

1、拉伸曲线(力—伸长曲线):

F-纵坐标,△L—横坐标

2、拉伸过程:

退火低碳钢在拉伸力作用下的变形过程可分为四个阶段:

弹性变形阶段一不均匀屈服塑性变形阶段一均匀塑性变形阶段一不均匀集中塑性变形阶段。

3、拉伸曲线的分类:

拉伸曲线可分为以下几种形式:

1退火低碳钢的拉伸曲线如图a所示,它有锯齿状的屈服阶段,分上、下屈服,均匀塑性变形后产生颈缩,然后试样断裂。

2中碳钢的拉伸曲线如图b所示,它有屈服阶段,但波动微小,几乎成一条直线,均匀塑性变形后产生颈缩,然后试样断裂。

3淬火后低中温回火钢的拉伸曲线如图c所示,它无可见的屈服阶段,试样产生均匀塑性变形并颈缩后产生断裂。

4铸铁、淬火钢等较脆材料在室温下的拉伸曲线如图d所示,它不仅无屈服阶段,而且在产生少量均匀塑性变形后就突然断裂。

 

断增加。

课后作业

教学后记

 

分教案

^1^1.^1^1^1

r^F

^1^1^1^1

■:

.o——0!

:

授课主题(或早节)

第一节应力-应变曲线

课次

2

授课方式

(请打V)

讲授(V)讨论课()实验课()习题课()其他()

学时

2

教学目的和要求

掌握拉伸试样的应力-应变曲线;理解真实应力与条件应力,真实应变与条件应变;掌握真实应力应变曲线。

教学重难点

真实应力与条件应力,真实应变与条件应变。

教学内容纲要

备注

第一节应力-应变曲线

复习上节主要内容,然后引入本节知识:

、光滑拉伸试样

二、拉伸曲线及应力应变曲线

三、真实应力与条件应力

四、真实应变与条件应变

1、条件应变

伸长量与原始标距长度之比,即“彳称为条件应变。

2、真实应变e

对任意时刻真正伸长率是这时刻相对于前时刻试样的伸长厶

一时刻长度li之比,即

■"■Hi

a=

li

试样的真实应变定义为每一时刻的真正伸长率的总和,即

li与前

先简要复习上次课的内容,而后引入本节内容

 

 

e=儿+」2+13+…+lk

丨010+心h丨0+凶210+也h+...+Aik」

|kdl

lol

inlk

l0

3、条件应变与真实应变之间的关系

e=lnlk=ln(loLk)

l0l0

断裂时:

ek=ln(1+汶)

=ln(1+£)

五、真实应力应变曲线

真实应力应变曲线见图1-3,可分为三个区段,各区段有不同的特点。

在I区,为直线,真应力与真应变成直线关系。

在U区,为均匀塑性变形阶段,是向下弯曲的曲线,遵循S=ken规律。

K,n均为材料常数。

n为形变强化指数。

当n二1时,上式变成c=E£,表示理想刚性状态。

当n=0时,则表示无硬化效应,表示理想塑性状态。

一般金属材料,1>n>0,n值不但在宏观上表征材料的形变强化特性,微观上反映了材料不同的应变强化机制。

它是板材冲压成形和材料

断裂分析的重要参数

在川区,曲线向上弯曲,可能是由三向应力造成的

 

本节教学内容结束后复习一些材料力学的基础知识:

杆件的基本变形;外力与内力;应力的概念;应变。

课后作业

教学后记

I

II

0

*

分教案

授课主题(或早节)

第二节弹性变形与弹性不完整性

课次

3

授课方式

(请打V)

讲授(V)讨论课()实验课()习题课()其他()

学时

2

教学目的

掌握弹性变形及其实质,掌握弹性模量定义及其影响因素;了解弹性比功、滞

和要求

弹性、包申格效应。

教学重难点

教学内容纲要

备注

变形-金属发生形状和尺寸改变的现象。

分弹性变形和塑性变形。

变形可以由多种因素引起,在此仅讨论应力所引起的变形。

一、弹性变形及其实质

1、物理过程(实质)

可用双原子模型来解释。

1、在没有外加载荷作用时,金属中的原子在其平衡位置附近产生震动。

2、相邻两原子之间的作用力由引力和斥力叠加而成。

一般认为:

引力是金属正离子和自由电子间的库仑力所产生,而斥力是由离子之间因电子壳层产生应变所致。

引力和斥力都是原子间距的函数。

当原子间距因受力减小时,斥力开始缓慢增加;当电子壳层重叠时,斥力迅速增加。

引力随原子间距的增加而逐渐下降。

合力曲线在原子平衡位置处为零。

3、原子间相互作用力F与原子间距r的关系为:

AAr。

2

F=2—4

rr

式中A、ro—与原子本性或晶体、晶格类型有关的常数。

上式中第一项为引力,第二项为斥力。

可见,原子间相互作用力与原子间距离的关系并非虎克定律所示的直线关系,而是抛物线关系。

但外力要较小时,原子偏离平衡位置不远,合力曲线的起始阶段可视为直线,贝U虎克定律表示的外力-位移(原子间相互作用力-原子间距离)线性关系近似是正确的。

4、弹性断裂载荷及变形量

当r=rm时,斥力接近为零,与外力平衡的原子间作用力只有引力,

合力曲线上出现极大值Fmax,Fmax是拉伸时两原子间的最大结合力。

如果外力达到Fmax,就可以克服两原子间的引力而使它分开。

因此,Fmax也就是金属材料在弹性状态下的断裂载荷(断裂抗力)。

相应的原子位移量rm-ro,即弹性变形最大量,接近23%。

弹性滞后和循环韧性

1、弹性滞后:

金属在弹性区内加载、卸载时,由于应变落后于应

力,使加载线与卸载线不重合而形成一封闭回线,是为弹性滞后。

封闭

回线称为弹性滞后环。

说明加载时消耗于金属的变形功大于卸载时金属释放的变形功,有一部分变形功被金属吸收,这部分吸收的变形功称为金属的内耗,大小用回线面积度量。

如果所加的是交变载荷,其最大应力低于宏观弹性极限,且加载速

率比较大,弹性后效不能顺利进行,则得到交变载荷下的弹性滞后环。

若交变载荷的最大应力超过宏观弹性极限,则得到塑性滞后环。

2、金属的循环韧性:

金属材料在交变载荷(振动)下在塑性变形区内加载时,吸收不可

逆变形功的能力,称为金属的循环韧性。

用塑性滞后环面积度量。

金属在弹性区内加载时吸收不可逆变形功的能力称为内耗。

用弹性

滞后环面积度量。

这两个名词有时混用。

金属的循环韧性又称消振性。

目前尚无统一的评定标准,通常用振

动试样中自由振动振幅衰减的自然对数值S来表示其大小。

TkTTT

S=In=In〜

T“TT

其值越大,消振能力越强。

贝闸件依靠材料自身的消振能力越好。

因此,高的循环韧性对于降低机械噪声,抑制高速机械的振动,防止共振导致疲劳断裂是很重要的。

铸铁因含有石墨不易传送弹性机械振动,故具有很高的循环韧性。

机床床身、发动机缸体等选用灰铸铁,气轮机叶片用1Cr13钢制造,其重要原因就是这类材料的循环韧性高,消振性好,可以保证机器稳定运转。

对于仪表传感元件,选用循环韧性低的材料,可以提高仪表的灵敏度。

乐器所用金属材料的S越小,其音质越好。

六、包申格(Bauschinger)效应

1、定义:

金属材料经过预先加载产生微量塑性变形(残余应变小于1〜4%),而后再同向加载规定残余伸长应力(Ce)升高,反向加载时(代)下降。

这种现象成为包申格效应。

2、原因:

用位错塞积群来解释。

3、度量:

用包申格应变表示。

即在给定应力下,拉伸卸载后第二次再拉伸与拉伸后第二次压缩两曲线之间的应变差。

4、危害:

包申格效应在许多金属中均有发现。

对高温回火的钢材较为明显。

对预微量塑性变形的钢材若反向使用时,会产生很大危害。

例1:

包申格效应对于承受应变疲劳载荷的机件是很重要的。

因为材料在应变疲劳过程中,每一周期内都产生微量塑性变形,在反向加载时,微量塑性变形抗力(规定残余伸长应力)降低,显示循环软化现象例2:

对预先经受冷变形的材料,如服役时受反向力作用,

 

就要考虑微量塑性变形抗力降低的有害影响,如冷拉型材及管子在受压状态下使用就是此种情况。

例3:

有利的一面。

可以利用包申格效应,如板材反向弯曲成型;拉拔的钢棒经过轧辊压制变直等。

消除:

①预先进行较大的塑性变形。

②在第二次反向受力前先对金属材料进行恢复或再结晶退火,如钢在400〜500C以上,铜合金在250〜270C以上退火。

课后作业

教学后记

 

学习好资料

欢迎下载

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1