第2编敏感器件 03.docx

上传人:b****3 文档编号:3486846 上传时间:2022-11-23 格式:DOCX 页数:13 大小:332.34KB
下载 相关 举报
第2编敏感器件 03.docx_第1页
第1页 / 共13页
第2编敏感器件 03.docx_第2页
第2页 / 共13页
第2编敏感器件 03.docx_第3页
第3页 / 共13页
第2编敏感器件 03.docx_第4页
第4页 / 共13页
第2编敏感器件 03.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

第2编敏感器件 03.docx

《第2编敏感器件 03.docx》由会员分享,可在线阅读,更多相关《第2编敏感器件 03.docx(13页珍藏版)》请在冰豆网上搜索。

第2编敏感器件 03.docx

第2编敏感器件03

*

第二编敏感器件

第五章光敏器件

§5.1基本情况

一、基础知识

光电效应:

受光激发→能带跃迁→光电导效应、光伏特效应。

本征半导体情况PN结情况

半导体的光电效应示意图

*完全纯净的半导体称为本征半导体(或I型半导体)。

硅和锗都是四价元素,其原子核最外层有四个价电子。

它们都是由同一种原子构成的“单晶体”,属于本征半导体。

在绝对温度零度和没有外界能量激发时,价电子受共价键的束缚,晶体中不存在自由运动的电子,半导体是不导电的。

但是,当温度升高或受光照等外界因素的影响,某些价电子获得了足够的能量,足以挣脱共价键的束缚,跃迁到导带,成为自由电子,同时在共价键中留下空穴。

把热激发产生的这种跃迁过程称为本征激发。

显然,本征激发所产生的自由电子和空穴数目是相同的。

主要特性:

光电特性光谱响应频率响应(明暗交替)

另外,还有伏安特性、温度特性等。

二、器件举例

光敏电阻光敏二极管光敏三极管光敏电池光耦(光电耦合器)

各种光敏器件的伏安特性等参看书上。

§5.2应用举例

一、光敏电阻应用

测光(温度→跃迁→发光)测温

*注意加限流电阻。

二、光敏二极管应用

光电变换器照度传感器(调制光:

可消除背景干扰)光控开关

光敏二极管应用举例

可输出调制光的电路举例

三、光敏三极管应用

光控报警电路光敏逻辑电路

四、光耦应用

隔离性好,抗干扰强。

(隔离电阻1010~1011Ω,隔离电压0.5~10kV,隔离电容<2pF)

开关电路放大电路电平移动

单稳态的触发隔离电路双稳态的触发隔离电路

此外,光敏器件还可构成其他应用电路。

(参看书上)

第六章热敏电阻

§6.1基本情况

一、原理特性

原理:

振动碰撞或能带跃迁→阻值变化

分类:

正温度系数(T↑→R↑),负温度系数(T↑→R↓)。

能带跃迁

热敏电阻的温度特性、电路符号及伏安特性

二、参数及工作点选择

主要参数:

标称阻值R25,温度系数α,耗散系数H(即温差1℃所耗散的功率),时间常数τ(即C/H,热容量C即电阻变化1℃所吸放的热量),额定功率PE(即长期连续负荷所允许的耗散功率)等。

工作点:

选择恰当与否,直接影响测控效果。

通常分为三个区域,各有相应的应用场合。

工作点选择(T0↑→R↓→Um↓)

§6.2应用举例

应根据使用目的和要求的不同,选择合适的热敏电阻类型、电参数及工作区域等。

一、温度测量

简单电路桥式电路

两种测温电路(器件相同,精度迥异)

Uab=E﹒RT/(R1+RT)-E﹒R3/(R2+R3),

电桥平衡时:

Uab=0

电桥失衡时:

△Uab=E﹒△RT/(R1+RT+△RT)≈△RT﹒E/(R1+RT)

热敏电阻温度计

二、温度控制

自动温控(T→RT→U→J)过热保护(T→RT→BT→J)

实际自动温度控制电路一例

三、温度补偿

串联补偿串并联补偿

四、其他应用

可用于测定湿度、气压、流量、风速等,还可用于恒温加热、自动开关等。

测流量测液位

*热电偶简介:

原理:

热电效应→电动势(包括接触电势和温差电势。

*均由电子浓度不同扩散所致。

∵接触电势eAB(T)=kT/q·ln(nA/nB),温差电势

(很小)

∴EAB(T,T0)=[eAB(T)-eAB(T0)]+[eB(T,T0)-eA(T,T0)]≈eAB(T)-eAB(T0)

热电偶测温优点:

精度高、范围广(-250~+1800℃)、简单方便等。

应用举例:

热电效应测量一点的温度测量两点的温度差

▲习题三

1、简述图5-12电路和图5-14电路的工作原理。

2、简述图6-7(b)电路和图6-9电路的工作原理。

第七章压敏电阻

(VDR:

Voltage Dependent Resistor)

§7.1特性参数

一、原理特性

非对称型(用于直流场合)对称型(交直流均可)

压敏电阻的结构、符号压敏电阻的伏安特性

原理:

齐纳击穿。

(介层薄,电场强)

特性:

I=(U/C)α=kUα。

分为:

非对称型,对称型。

二、主要参数

主要参数:

非线性系数α(越大越好,1~102),C值(即电流1A时的电压值,相当于电阻),标称电压U1mA,通流能力,固有电容,残压比(U残/U1mA,越小越好)等。

几种主要压敏电阻特点简介:

氧化锌:

非线性系数高(可达110左右),允许电流大,温度系数小,电压范围宽,应用最广。

碳化硅:

非线性系数低(约为3~7),特性对称,耐压高(可达几万伏),热稳定性好,用于接点消弧、电路稳压、异常电压吸收等。

碳酸钡:

非线性系数较高(20左右),压敏电压在几伏以下,寿命长,价格低。

§7.2应用举例

压敏电阻用途很广,主要用于抑制浪涌(即能量的突然释放),如雷电浪涌、电感电流或电容电压引起的暂态冲击等。

Rv选用应适当。

一、过压保护

电气设备避雷(102~104V)

电路保护

开关保护(侧重点不同:

源,K)

器件保护(晶体管的过压保护)

器件保护(晶闸管的过压保护)

二、其他应用

稳压电路(UL↑→IRV

→UR1

→UL↓)倍增电路(△UO/UO>△Ui/Ui)

彩显消磁电流彩电消磁电路

(开始:

RT小,RV小,iL大;随后:

RT↑,RV↑,iL↓。

 

*关于电容、电感:

C:

C=Q/V,即Q=CV,而i=dQ/dt=CdV/dt,∴V=1/C∫idt,

故:

Vc只能渐变。

(因此C可导致放电冲击。

L:

L=Φ/i,即Φ=Li,而v=dΦ/dt=Ldi/dt,∴i=1/L∫vdt,

(自感电势E=-dΦ/dt)

故:

iL只能渐变。

(因此L可导致续流高压冲击。

常用RC缓冲电路续流保护示意图

第八章磁敏器件

§8.1霍尔元件

一、特性参数

霍尔效应原理图电路符号霍尔元件的基本电路

原理:

洛仑兹力(Lorentzforce)作用,导致电荷偏转累积,形成霍尔电势。

UH=K·IBcosθ

*实践证明:

霍尔器件的长宽比越大,霍尔电压越接近理论值。

但比值过大,电阻增加,故长宽比一般不超过2。

温度补偿零位补偿(或不等位电势补偿)

主要参数:

输入内阻RI,输出内阻RV,灵敏度KH,不等位电阻r0,最大控制电流Imax,霍尔电势温度系数α,内阻温度系数β等。

二、应用举例

基本电路(测磁)读磁(磁读头)乘法器

测电流测位移集成霍尔器件应用

(导磁体中磁阻较小)(小磁针N方向为磁力线方向)

§8.2其他磁敏器件

一、磁敏电阻

磁阻效应:

磁场增强,半导体的电阻增大。

磁阻效应与所加磁场的频率、半导体材料的种类和几何形状等均有关系。

磁敏电阻应用非常广泛,如:

电流计、磁通计、功率计、放大计等。

磁敏电阻特性及符号位移测量交流放大(Ui→RM→Uo)

二、磁敏二极管

体积小、灵敏度高,能判别磁场的方向,电路简单。

但噪声大。

磁敏二极管(P+-I-N+型)的结构及工作原理不同的放置方向有不同的效果

(正向磁场:

复合增加,载流子减少;反向磁场:

分离增多,载流子增加。

如水蒸汽)

(反向运动的电子、空穴,受磁场力作用,偏向同一侧)

*由于载流子复合效应等,磁敏二极管的灵敏度大大提高,且能判别磁场的方向。

磁敏二极管特性及符号基本电路(测磁)流量计(旋转→脉冲→计数)

*采用桥式电路,灵敏度、对称性、温度补偿性均好。

简易高斯计

三、磁敏三极管

灵敏度高,温漂小,线性好,稳定可靠。

因此应用广泛。

如开关电路、测磁电路等。

磁敏三极管测磁电路

*其中,两个磁敏三极管组成差分电路,电容反馈可消除噪声和提高稳定性。

此电路可检测10Gs左右的微弱磁场。

▲习题四

1、简述图7-6(b)电路和图7-7电路的保护原理。

2、写出霍尔电压表达式及其含义,并简述图8-1(C)电路的测磁原理和图8-18电路的放大原理。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > IT认证

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1