SAS程序范例2.docx

上传人:b****5 文档编号:3427606 上传时间:2022-11-23 格式:DOCX 页数:13 大小:101.94KB
下载 相关 举报
SAS程序范例2.docx_第1页
第1页 / 共13页
SAS程序范例2.docx_第2页
第2页 / 共13页
SAS程序范例2.docx_第3页
第3页 / 共13页
SAS程序范例2.docx_第4页
第4页 / 共13页
SAS程序范例2.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

SAS程序范例2.docx

《SAS程序范例2.docx》由会员分享,可在线阅读,更多相关《SAS程序范例2.docx(13页珍藏版)》请在冰豆网上搜索。

SAS程序范例2.docx

SAS程序范例2

5.13矿物数据典型相关分析

SAS数据集是某矿区下部矿矿物数据。

x1是铂,x2是钯,y1是铜,y2镍。

用Cancorr过程进行典型相关分析。

一组变量为(x1x2),另一组变量为(y1y2)。

(v1w1)是第一对典型变量,(v2w2)是第二对典型变量。

“%plotit(data=a&i,labelvar=x1,

plotvars=w1v1,colors=red);

%plotit(data=a&i,labelvar=y1,

plotvars=w1v1,colors=magenta);”

表示画出(w1,v1)的两个图,分别标出x1与y1。

%letd1=fjc.ms10d1;

%letc1=x1x2;

%letb1=y1y2;

%macrocancorr;

%doi=1%to1;

title"cancorr&&d&i";

proccancorrdata=&&d&iout=a&i;

var&&c&i;

with&&b&i;

run;

procprintdata=a&i(keep=v1w1v2w2);

run;

%letplotitop=gopts=cback=blue,color=white,cframe=yellow;

%plotit(data=a&i,labelvar=x1,

plotvars=w1v1,colors=red);

%plotit(data=a&i,labelvar=y1,

plotvars=w1v1,colors=magenta);

%end;

%mend;

%cancorr;

 

表5.13.1d1的典型相关系数及显著性检验

TheCANCORRProcedure

CanonicalCorrelationAnalysis

AdjustedApproximateSquared

CanonicalCanonicalStandardCanonical

CorrelationCorrelationErrorCorrelation

10.8946180.8894690.0391560.800341

20.009496.0.1960980.000090

TestofH0:

Thecanonicalcorrelationsinthe

EigenvaluesofInv(E)*Hcurrentrowandallthatfollowarezero

=CanRsq/(1-CanRsq)

LikelihoodApproximate

EigenvalueDifferenceProportionCumulativeRatioFValueNumDFDenDFPr>F

14.00854.00841.00001.00000.1996413714.24446<.0001

20.00010.00001.00000.999909830.001240.9633

 

MultivariateStatisticsandFApproximations

S=2M=-0.5N=10.5

StatisticValueFValueNumDFDenDFPr>F

Wilks'Lambda0.1996413714.24446<.0001

Pillai'sTrace0.800430808.01448<.0001

Hotelling-LawleyTrace4.0086203222.76426.595<.0001

Roy'sGreatestRoot4.0085301448.10224<.0001

NOTE:

FStatisticforRoy'sGreatestRootisanupperbound.

NOTE:

FStatisticforWilks'Lambdaisexact.

 

表5.13.2d1的典型相关分析

TheCANCORRProcedure

CanonicalCorrelationAnalysis

RawCanonicalCoefficientsfortheVARVariables

V1V2

x1-0.1054235865.1216636294

x22.5630585828-1.945443218

RawCanonicalCoefficientsfortheWITHVariables

W1W2

y12.6083711454-10.72223803

y210.20545216715.508887379

 

TheCANCORRProcedure

CanonicalCorrelationAnalysis

StandardizedCanonicalCoefficientsfortheVARVariables

V1V2

x1-0.02631.2754

x21.0161-0.7712

StandardizedCanonicalCoefficientsfortheWITHVariables

W1W2

y10.3231-1.3282

y20.75141.1419

 

TheCANCORRProcedure

CanonicalStructure

CorrelationsBetweentheVARVariablesandTheirCanonicalVariables

V1V2

x10.60460.7965

x20.99980.0206

CorrelationsBetweentheWITHVariablesandTheirCanonicalVariables

W1W2

y10.8354-0.5497

y20.97170.2364

CorrelationsBetweentheVARVariablesandtheCanonicalVariablesoftheWITHVariables

W1W2

x10.54090.0076

x20.89440.0002

CorrelationsBetweentheWITHVariablesandtheCanonicalVariablesoftheVARVariables

V1V2

y10.7473-0.0052

y20.86930.0022

 

表5.13.3d1的典型变量

ObsV1V2W1W2

1-0.89636-0.48855-0.686161.18193

2-0.39007-0.570340.417191.24319

3-1.37491-0.52865-1.91082-0.67914

4-1.37596-0.47743-0.762140.91962

5-1.09930-0.43535-0.812020.55009

60.524520.348780.343500.39691

7-0.47013-0.35832-0.80746-0.61787

8-0.802014.73356-0.835830.07333

90.00209-0.01093-0.297190.15757

10-0.150640.05458-0.451410.21693

110.278760.03116-0.72921-0.93954

120.49118-0.482990.52837-0.93763

130.526630.246350.651950.27819

141.237960.008921.420780.56539

150.61090-0.170530.391111.35042

160.78610-0.101850.73020-0.04347

170.322640.350770.395670.18246

180.273490.287241.38229-2.72403

190.56280-0.285270.60662-1.25930

201.611880.229271.416211.73335

211.615040.075621.83811-1.15017

221.95984-0.740670.96267-0.42450

230.53296-0.060950.801611.38679

24-1.47427-0.60448-1.246320.03695

25-0.95395-0.14234-1.272410.14417

26-1.39843-0.61163-1.19188-0.76147

27-0.95078-0.29599-0.88343-0.88018

 

图5.13.1d1的(W1,V1)图(标号X1)

 

图5.13.2d1的(W1,V1)图(标号Y1)

5.14各地区接待入境旅游人数典型相关分析

SAS数据集是各地区接待入境旅游人数。

SAS数据集d1中,x1是1995年旅游人数,x2是2000年旅游人数,x3是2003年旅游人数,x4是2004年旅游人数;SAS数据集d2中,y1是1995年外国人旅游人数,y2是2000年外国人旅游人数,y3是2003年外国人旅游人数,y4是2004年外国人旅游人数。

用Cancorr过程进行典型相关分析。

一组变量为(x1x2x3x4),另一组变量为(y1y2y3y4)。

(v1w1)是第一对典型变量,(v2w2)是第二对典型变量,(v3w3)是第三对典型变量,(v4w4)是第四对典型变量。

分别画出(d,v1)、(d,w1)、(d,v2)、(d,w2)图,标号为地区。

%letd1=fjc.dqlyrs;

%letc1=x1-x4;

%letb1=y1-y4;

%macrocancorr;

%doi=1%to1;

title"cancorr&&d&i";

proccancorrdata=&&d&iout=a&i;

var&&c&i;

with&&b&i;

run;

procprintdata=a&i(keep=dv1w1v2w2);

run;

procgplotdata=a&i;

plotd*v1/cframe=yellow;

plotd*w1/cframe=cyan;

plotd*v2/cframe=pink;

plotd*w2/cframe=orange;

symbolv=dotc=redpointlabel;

run;

%end;

%mend;

%cancorr;

表5.14.1d1的典型相关系数及显著性检验

TheCANCORRProcedure

CanonicalCorrelationAnalysis

AdjustedApproximateSquared

CanonicalCanonicalStandardCanonical

CorrelationCorrelationErrorCorrelation

10.9868940.9837370.0048350.973960

20.9727110.9711860.0099970.946166

30.8005500.7809490.0666870.640880

40.658403.0.1051980.433494

TestofH0:

Thecanonicalcorrelationsinthe

EigenvaluesofInv(E)*Hcurrentrowandallthatfollowarezero

=CanRsq/(1-CanRsq)

LikelihoodApproximate

EigenvalueDifferenceProportionCumulativeRatioFValueNumDFDenDFPr>F

137.402819.82720.65020.65020.0002851957.101667.849<.0001

217.575615.79100.30550.95570.0109522133.62956.127<.0001

31.78461.01940.03100.98670.2034437414.60448<.0001

40.76520.01331.00000.5665059019.131250.0002

MultivariateStatisticsandFApproximations

S=4M=-0.5N=10

StatisticValueFValueNumDFDenDFPr>F

Wilks'Lambda0.0002851957.101667.849<.0001

Pillai'sTrace2.9944999518.6116100<.0001

Hotelling-LawleyTrace57.5281553775.871638.364<.0001

Roy'sGreatestRoot37.40278297233.77425<.0001

NOTE:

FStatisticforRoy'sGreatestRootisanupperbound.

 

表5.14.2d1的典型相关分析

TheCANCORRProcedure

CanonicalCorrelationAnalysis

RawCanonicalCoefficientsfortheVARVariables

V1V2V3V4

x10.0176483864-0.018438494-0.072065034-0.036908372

x2-0.004138819-0.0164834630.03924026980.0378485365

x3-0.0440675710.0168780218-0.067099874-0.010344513

x40.03148829690.00857747630.0490970681-0.003744316

RawCanonicalCoefficientsfortheWITHVariables

W1W2W3W4

y10.0268298418-0.023770114-0.069220296-0.124811032

y.025*******

y.025*******

y40.04161347330.00901485850.08661633550.0026487349

TheCANCORRProcedure

CanonicalCorrelationAnalysis

StandardizedCanonicalCoefficientsfortheVARVariables

V1V2V3V4

x12.0275-2.1182-8.2789-4.2401

x2-0.8954-3.56608.48938.1882

x3-9.60323.6781-14.6224-2.2543

x48.99502.450314.0252-1.0696

StandardizedCanonicalCoefficientsfortheWITHVariables

W1W2W3W4

y11.0219-0.9054-2.6365-4.7539

y2-0.5954-1.16081.45046.1246

y3-3.60221.5443-7.6390-1.4531

y43.97990.86228.28400.2533

 

TheCANCORRProcedure

CanonicalStructure

CorrelationsBetweentheVARVariablesandTheirCanonicalVariables

V1V2V3V4

x10.58100.3565-0.38760.6206

x20.49810.3942-0.33520.6958

x30.46610.5182-0.34140.6306

x40.52740.5121-0.31050.6026

CorrelationsBetweentheWITHVariablesandTheirCanonicalVariables

W1W2W3W4

y10.87380.0805-0.43440.2031

y20.81000.1712-0.41840.3736

y30.68990.5452-0.39630.2642

y40.77250.4984-0.30970.2429

CorrelationsBetweentheVARVariablesandtheCanonicalVariablesoftheWITHVariables

W1W2W3W4

x10.57340.3468-0.31030.4086

x20.49160.3834-0.26840.4581

x30.46000.5040-0.27330.4152

x40.52050.4981-0.24860.3968

CorrelationsBetweentheWITHVariablesandtheCanonicalVariablesoftheVARVariables

V1V2V3V4

y10.86240.0783-0.34780.1337

y20.79940.1665-0.33490.2459

y30.68080.5303-0.31720.1740

y40.76230.4848-0.24790.1599

表5.14.3d1的典型相关分析结果

ObsDV1V2W1W2

1Beijing3.50032-2.803893.45586-2.82174

2Tianjin-0.768790.22625-0.959630.31867

3Hebei-0.04681-0.186320.00253-0.21539

4Shanxi-0.28237-0.12460-0.39521-0.29193

5InnerMongolia0.305100.013030.56018-0.03581

6Liaoning-0.576830.57580-0.679970.70734

7Jilin-0.48922-0.19005-0.45423-0.31409

8Heilongjiang-0.981500.24046-1.188460.34949

9Shanghai2.256881.753752.272772.12562

10Jiangsu-0.251882.157200.052092.10248

11Zhejiang0.704492.158600.703511.81583

12Anhui-0.29929-0.05501-0.31896-0.10866

13Fujian-0.98139-0.49088-0.70698-0.11379

14Jiangxi-0.52130-0.04863-0.57200-0.26682

15Shandong0.070780.14063-0.008640.42451

16Henan0.07757-0.40429-0.30917-0.38144

17Hubei-0.32718-0.20418-0.43890-0.15484

18Hunan0.42951-0.511190.41897-0.15033

19Guangdong1.721512.237041.606252.08179

20Guangxi0.30715-0.862040.54000-0.60313

21Hainan-0.77586-0.74224-0.73227-0.09372

22Sichuan0.76562-0.035330.58319-0.17655

23Guizhou-0.20683-0.39726-0.39349-0.49691

24Yunnan-1.06109-0.28876-0.94736-0.45790

25Tibet-0.62581-0.37420-0.57004-0.53245

26Shaanxi0.19275-0.688280.47605-1.10330

27Gansu-0.39091-0.31438-0.43389-0.44805

28Qinghai-0.73687-0.19395-0.69015-0.31613

29Ningxia-0.74773-0.17897-0.69357-0.30441

30Xinjiang-0.26001-0.40831-0.17848-0.53832

 

图5.14.1d1的(D,V1)图(标号地区)

 

图5.14.2d1的(D,W1)图(标号地区)

 

图5.14.3d1的(D,V2)图(标号地区)

 

图5.19.4d1的(D,W2)图(标号地区)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 环境科学食品科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1