基于DS8B20的智能调温系统结题报告.docx

上传人:b****6 文档编号:3355718 上传时间:2022-11-22 格式:DOCX 页数:35 大小:416.33KB
下载 相关 举报
基于DS8B20的智能调温系统结题报告.docx_第1页
第1页 / 共35页
基于DS8B20的智能调温系统结题报告.docx_第2页
第2页 / 共35页
基于DS8B20的智能调温系统结题报告.docx_第3页
第3页 / 共35页
基于DS8B20的智能调温系统结题报告.docx_第4页
第4页 / 共35页
基于DS8B20的智能调温系统结题报告.docx_第5页
第5页 / 共35页
点击查看更多>>
下载资源
资源描述

基于DS8B20的智能调温系统结题报告.docx

《基于DS8B20的智能调温系统结题报告.docx》由会员分享,可在线阅读,更多相关《基于DS8B20的智能调温系统结题报告.docx(35页珍藏版)》请在冰豆网上搜索。

基于DS8B20的智能调温系统结题报告.docx

基于DS8B20的智能调温系统结题报告

基于DS8B20的智能调温系统结题报告

中北大学大学生创新创业训练项目

结题报告

 

项目名称:

基于DS18B20的智能温度调节系统

学院名称(盖章):

仪器与电子学院

项目负责人:

呼延

 

中北大学教务处制

 

摘要

 

随着科技的进步,人类物质生活的提高,人们对自动化、智能化的要求越来越高,各种自动化设备应运而生,逐渐代替耗时、耗力、效率低的人工操作,温控系统便是其中一种。

在农业、工业、生活等诸多领域中,人们都需要对各类设备中的温度进行检测和控制,比如热反应炉,农业中的蔬菜大棚,大型粮仓....温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量和产量,因而设计一种较为理想的温度控制系统是非常有价值的。

本项目采用51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。

使用DS18B20温度传感器,由于它具有微型化、低功耗、高性能、抗干拢能力强、易配微处理器等优点,可以实现多点温度检测,通过检测环境温度,传送给单片机,单片机通过分析、比较,发出相应的指令,进行报警并做相关处理;当环境温度高于预设值时,开启制冷设备(风扇模拟),同理,环境温度低于预设值时,开启制热设备(模拟),当温度一段时间仍为达到理想值,可以加大功率。

用串口将采集到的温度数据实时发送至上位机(进行实时监控)。

本项目不仅可以应用到实际中提高生产效率,减少损失、增加产量,更重要的是可以拓展我们大学生的知识领域,增强我们的动手能力,将所学到的知识运用到实际中,更好的达到书本知识与实际生活接轨,增强大学生的个人素质!

关键词:

单片机;温度控制系统;DS18B20温度传感器

 

 

1引言1

1.1温度控制系统设计的背景、发展历史及意义1

1.2温度控制系统的目的1

1.3温度控制系统完成的功能1

2总体设计方案1

2.1方案一1

2.2方案二2

3DS18B20温度传感器简介6

3.1温度传感器的历史及简介6

3.2DS18B20的工作原理6

3.2.1DS18B20工作时序6

3.2.2ROM操作命令8

3.3DS18B20的测温原理8

3.3.1DS18B20的测温原理:

8

3.3.2DS18B20的测温流程10

4单片机接口设计10

4.1设计原则10

4.2引脚连接11

4.2.1晶振电路11

4.2.2串口引脚11

4.2.3其它引脚11

5系统整体设计11

5.1系统硬件电路设计11

5.1.1主板电路设计11

5.1.2各部分电路11

5.2系统软件设计14

5.2.1系统软件设计整体思路14

5.2.2系统程序流图14

5.3调试18

6总结19

附录20

参考文献27

 

1引言

1.1温度控制系统设计的背景、发展历史及意义

温度是生产过程和科学实验中普遍而且重要的物理参数,随着社会的发展,科技的进步,以及测温仪器在各个领域的应用,智能化已是现代温度控制系统发展的主流方向。

特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。

针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。

温度是一个重要的物理量,它反映了物体冷热的程度,与自然界中的各种物理和化学过程相联系。

在工、农业生产和日常生活中,各个环节都与温度紧密相联,温度的准确监测及控制占据着极其重要地位。

比如,发电厂锅炉的温度必须控制在一定的范围之内;许

多化学反应的工艺过程必须在适当的温度下才能正常进行等。

没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。

可见,温度的测量和控制是非常重要的。

随着电子技术和微型计算机的迅速发展,单片机在电子产品中的应用已经越来越广泛。

利用单片机对温度进行控制的技术也随之而生,并日益发展和完善,且越来越显示出它的优越性。

1.2温度控制系统的目的

本设计的内容是温度测试控制系统,控制对象是温度。

温度控制在日常生活及工业领域应用相当广泛,比如温室、水池、发酵缸、电源等场所的温度控制。

而以往温度控制是由人工完成的而且不够重视,其实在很多场所温度都需要监控以防止发生意外。

针对此问题,本系统设计的目的是实现一种可连续高精度调温的温度控制系统,它应用广泛,功能强大,小巧美观,便于携带,是一款既实用又廉价的控制系统。

1.3温度控制系统完成的功能

本设计是对温度进行实时监测与控制,设计的温度控制系统实现了基本的温度控制功能:

通过检测环境温度,传送给单片机,单片机通过分析、比较,发出相应的指令,进行报警并做相关处理;当环境温度高于预设值时,开启制冷设备(风扇模拟),同理,环境温度低于预设值时,开启制热设备(模拟),当温度一段时间仍为达到理想值,可以加大功率。

液晶LCD1602即时显示温度,精确到小数点一位。

 

2总体设计方案

2.1方案一

测温电路的设计,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

2.2方案二

考虑使用温度传感器,结合单片机电路设计,采用一只DS18B20温度传感器,直接读取被测温度值,之后进行转换,依次完成设计要求。

比较以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计容易实现,故实际设计中拟采用方案二。

在本系统的电路设计方框图如图1.1所示,它由三部分组成:

①控制部分主芯片采用单片机AT89S52;②显示部分采用液晶lcd1602实现温度显示;③温度采集部分采用DS18B20温度传感器。

加热

降温

图2-1温度计电路总体设计方案

1.控制部分

单片机AT89S52具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用,系统应用三节电池供电。

2.显示部分

显示电路采用lcd1602液晶显示。

3.温度采集部分

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温。

这一部分主要完成对温度

信号的采集和转换工作,由DS18B20数字温度传感器及其与单片机的接口部分组成。

数字温度传感器DS18B20把采集到的温度通过数据引脚传到单片机的P2.0口,单片机接受温度并存储。

此部分只用到DS18B20和单片机,硬件很简单

1)DS18B20的性能特点如下[9]:

1)独特的单线接口仅需要一个端口引脚进行通信;

2)多个DS18B20可以并联在惟一的三线上,实现多点组网功能;

3)无须外部器件;

4)可通过数据线供电,电压范围为3.0~5.5V;

5)零待机功耗;

6)温度以3位数字显示;

7)用户可定义报警设置;

8)报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;

9)负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。

(2)DS18B20的内部结构

DS18B20采用3脚PR-35封装,如图1.2所示;DS18B20的内部结构,如图3所示。

图2-2DS18B20封装

(3)DS18B20内部结构主要由四部分组成[5]:

1)64位光刻ROM。

开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前56位的CRC校验码,这也是多个DS18B20可以采用一线进行通信的原因[10]。

64位闪速ROM的结构如下.

表2-1ROM结构

8b检验CRC

48b序列号

8b工厂代码(10H)

MSBLSBMSBLSBMSBLSB

图2-3DS18B20内部结构

2)非挥发的温度报警触发器TH和TL,可通过软件写入用户报警上下限值。

3)高速暂存存储,可以设置DS18B20温度转换的精度。

DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的E2PRAM。

高速暂存RAM的结构为8字节的存储器,结构如图1.3所示。

头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。

第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。

DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。

它的内部存储器结构和字节定义如图1.3所示。

低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式。

表2-2DS18B20内部存储器结构

Byte0

温度测量值LSB(50H)

Byte1

温度测量值MSB(50H)

E2PROM

Byte2

TH高温寄存器

←----→

TH高温寄存器

Byte3

TL低温寄存器

←----→

TL低温寄存器

Byte4

配位寄存器

←----→

配位寄存器

Byte5

预留(FFH)

Byte6

预留(0CH)

Byte7

预留(IOH)

Byte8

循环冗余码校验(CRC)

2)非挥发的温度报警触发器TH和TL,可通过软件写入用户报警上下限值。

3)高速暂存存储,可以设置DS18B20温度转换的精度。

DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率,如图1.4。

图2-3DS18B20字节定义

TM

R1

R0

1

1

1

1

1

由表1.1可见,分辨率越高,所需要的温度数据转换时间越长。

因此,在实际应用中要将分辨率和转换时间权衡考虑。

高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。

第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。

单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。

当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。

表1.2是一部分温度值对应的二进制温度数据[6]。

表2-4DS18B20温度转换时间表

R1

R0

分辨率/位

温度最大转向时间/ms

0

0

9

93.75

0

1

10

187.5

1

0

11

375

1

1

12

750

表2-5 一部分温度对应值表

温度/℃

二进制表示

十六进制表示

+125

0000011111010000

07D0H

+85

0000010101010000

0550H

+25.0625

0000000110010000

0191H

+10.125

0000000010100001

00A2H

+0.5

0000000000000010

0008H

0

0000000000001000

0000H

-0.5

1111111111110000

FFF8H

续表2-5

-10.125

1111111101011110

FF5EH

-25.0625

1111111001101111

FE6FH

-55

1111110010010000

FC90H

4)CRC的产生

在64bROM的最高有效字节中存储有循环冗余校验码(CRC)。

主机根据ROM的前56位来计算CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数据是否正确。

另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。

系统对DS18B20的各种操作按协议进行。

操作协议为:

初使化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数

3DS18B20温度传感器简介

3.1温度传感器的历史及简介

温度的测量是从金属(物质)的热胀冷缩开始。

水银温度计至今仍是各种温度测量的计量标准。

可是它的缺点是只能近距离观测,而且水银有毒,玻璃管易碎。

代替水银的有酒精温度计和金属簧片温度计,它们虽然没有毒性,但测量精度很低,只能作为一个概略指示。

不过在居民住宅中使用已可满足要求。

在工业生产和实验研究中为了配合远传仪表指示,出现了许多不同的温度检测方法,常用的有电阻式、热电偶式、PN结型、辐射型、光纤式及石英谐振型等。

它们都是基于温度变化引起其物理参数(如电阻值,热电势等)的变化的原理。

随着大规模集成电路工艺的提高,出现了多种集成的数字化温度传感器。

3.2DS18B20的工作原理

3.2.1DS18B20工作时序

根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:

1.每一次读写之前都必须要对DS18B20进行复位;

2.复位成功后发送一条ROM指令;

3.最后发送RAM指令,这样才能对DS18B20进行预定的操作。

复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待15~60微秒左右后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。

其工作时序包括初始化时序、写时序和读时序,具体工作方法如图2.1,2.2,2.3所示。

(1)初始化时序

图3-1初始化时序

总线上的所有传输过程都是以初始化开始的,主机响应应答脉冲。

应答脉冲使主机知道,总线上有从机设备,且准备就绪。

主机输出低电平,保持低电平时间至少480us,以产生复位脉冲。

接着主机释放总线,4.7KΩ上拉电阻将总线拉高,延时15~60us,并进入接受模式,以产生低电平应答脉冲,若为低电平,再延时480us[12]。

(2)写时序

图3-2写时序

写时序包括写0时序和写1时序。

所有写时序至少需要60us,且在2次独立的写时序之间至少需要1us的恢复时间,都是以总线拉低开始。

写1时序,主机输出低电平,延时2us,然后释放总线,延时60us。

写0时序,主机输出低电平,延时60us,然后释放总线,延时2us[8]。

(3)读时序

图3-3读时序

总线器件仅在主机发出读时序是,才向主机传输数据,所以,在主机发出读数据命令后,必须马上产生读时序,以便从机能够传输数据。

所有读时序至少需要60us,且在2次独立的读时序之间至少需要1us的恢复时间。

每个读时序都由主机发起,至少拉低总线1us。

主机在读时序期间必须释放总线,并且在时序起始后的15us之内采样总线状态。

主机输出低电平延时2us,然后主机转入输入模式延时12us,然后读取总线当前电平,然后延时50us[4]

3.2.2ROM操作命令

当主机收到DSl8B20的响应信号后,便可以发出ROM操作命令之一,这些命令如表2.2:

ROM操作命令。

3.3DS18B20的测温原理

3.3.1DS18B20的测温原理:

每一片DSl8B20在其ROM中都存有其唯一的48位序列号,在出厂前已写入片内ROM中。

主机在进入操作程序前必须用读ROM(33H)命令将该DSl8B20的序列号读出。

程序可以先跳过ROM,启动所有DSl8B20进行温度变换,之后通过匹配ROM,再逐一地读回每个DSl8B20的温度数据。

DS18B20的测温原理如图2.4所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。

计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。

图2.3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值.

指令

约定代码

功能

读ROM

33H

读DS18B20ROM中的编码

符合ROM

55H

发出此命令之后,接着发出64位ROM编码,访问单线总线上与该编码相对应的DS18B20使之作出响应,为下一步对该DS18B20的读写作准备

搜索ROM

0F0H

用于确定挂接在同一总线上DS18B20的个数和识别64位ROM地址,为操作各器件作好准备

跳过ROM

0CCH

忽略64位ROM地址,直接向DS18B20发温度变换命令,适用于单片工作。

续表3-1

告警搜索

命令

0ECH

执行后,只有温度超过设定值上限或者下限的片子才做出响应

温度变换

44H

启动DS18B20进行温度转换,转换时间最长为500MS,结果存入内部9字节RAM中

读暂存器

0BEH

读内部RAM中9字节的内容

写暂存器

4EH

发出向内部RAM的第3,4字节写上、下限温度数据命令,紧跟读命令之后,是传送两字节的数据

复制暂存器

48H

将E2PRAM中第3,4字节内容复制到E2PRAM中

重调E2PRAM

0BBH

将E2PRAM中内容恢复到RAM中的第3,4字节

读供电

方式

0B4H

读DS18B20的供电模式,寄生供电时DS18B20发送“0”,外接电源供电DS18B20发送“1”

另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。

系统对DS18B20的各种操作必须按协议进行。

操作协议为:

初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。

图3-4测温原理内部装置

3.3.2DS18B20的测温流程

图3-5DS18B20测温流程

.

4单片机接口设计

4.1设计原则

DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。

另一种是寄生电源供电方式,如图3.1所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。

本设计采用电源供电方式,P1.1口接单线总线为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管和89S52的P2.0来完成对总线的上拉。

当DS18B20处于写存储器操作和温度A/D变换操作时,总线上必须有强的上拉,上拉开启时间最大为10μs。

采用寄生电源供电方式是VDD和GND端均接地。

由于单线制只有一根线,因此发送接收口必须是三状态的。

主机控制DS18B20完成温度转换必须经过3个步骤:

●初始化;

●ROM操作指令;

●存储器操作指令。

4.2引脚连接

4.2.1晶振电路

单片机XIAL1和XIAL2分别接30PF的电容,中间再并个12MHZ的晶振,形成单片机的晶振电路。

4.2.2串口引脚

P0口接9个2.2K的排阻然后接到显示电路上。

P2.0温度传感器DS18B20如图3.1所示。

 

图4-1DS18B20与单片机的接口电路

P1口连接液晶的数据传输引脚。

P2口中P2.5接蜂鸣器电路,其他引脚悬空

P3口中P3.4、P3.6接液晶的使能端。

4.2.3其它引脚

ALE引脚悬空,复位引脚接到复位电路、VCC接电源、VSS接地、EA接电源

5系统整体设计

5.1系统硬件电路设计

5.1.1主板电路设计

单片机的P2.0接DS18B20的2号引脚,P1口送液晶显示,P2.1、P2.2控制加热器和电风扇。

如附录2。

5.1.2各部分电路

(1)显示电路

显示电路采用了液晶lcd1602显示,节约了单片机的输出端口,便于程序的编写。

图5-1显示电路图

(2)单片机电路

图5-2单片机电路引脚图

(3)DS18B20温度传感器电路

图5-3温度传感器电路引脚图

(4)晶振控制电路

图5-5晶振控制电路图

(5)复位电路

图5-6复位电路图

5.2系统软件设计

5.2.1系统软件设计整体思路

一个应用系统要完成各项功能,首先必须有较完善的硬件作保证。

同时还必须得到相应设计合理的软件的支持,尤其是微机应用高速发展的今天,许多由硬件完成的工作,都可通过软件编程而代替。

甚至有些必须采用很复杂的硬件电路才能完成的工作,用软件编程有时会变得很简单,如数字滤波,信号处理等。

因此充分利用其内部丰富的硬件资源和软件资源,采用与S51系列单片机相对应的c语言和结构化程序设计方法进行软件编程。

程序设计语言有三种:

机器语言、汇编语言和高级语言。

机器语言是机器唯一能“懂”的语言,用汇编语言或高级语言编写的程序(称为源程序)最终都必须翻译成机器语言的程序(成为目标程序),计算机才能“看懂”,然后逐一执行。

高级语言是面向问题和计算过程的语言,它可通过于各种不同的计算机,用户编程时不必仔细了解所用的计算机的具体性能与指令系统,而且语句的功能强,常常一个语句已相当于很多条计算机指令,于是用高级语言编制程序的速度比较快,也便于学习和交流,但是本系统却选用了汇编语言。

原因在于,本系统是编制程序工作量不大、规模较小的单片机微控制系统,使用汇编语言可以不用像高级语言那样占用较多的存储空间,适合于存储容量较小的系统。

同时,本系统对位处理要求很高,需要解决大量的逻辑控制问题。

MCS—51指令系统的指令长度较短,它在存储空间和执行时间方面具有较高的效率,编成的程序占用内存单元少,执行也非常的快捷,与本系统的应用要求很适合。

而且MCS—51指令系统有丰富的位操作(或称位处理)指令,可以形成一个相当完整的位操作指令子集,这是MCS—51指令系统主要的优点之一。

对于要求反应灵敏与控制及时的工控、检测等实时控制系统以及要求体积小、系统小的许多“电脑化”产品,可以充分体现出汇编语言简明、整齐、执行时间短和易于使用的特点。

本装置的软件包括主程序、读出温度子程序、复位应答子程序、写入子程序、以及有关DS18B20的程序(初始化子程序、写程序和读程序)

5.2.2系统程序流图

系统程序主要包括主程序,读出温度子程序,复位应答子程序,写入子程序等。

1)主程序

主程序的主要功能是负责温度的实时显示、读出并处理DS18B2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1