单片机88点阵屏设计.docx

上传人:b****6 文档编号:3242539 上传时间:2022-11-21 格式:DOCX 页数:21 大小:374.30KB
下载 相关 举报
单片机88点阵屏设计.docx_第1页
第1页 / 共21页
单片机88点阵屏设计.docx_第2页
第2页 / 共21页
单片机88点阵屏设计.docx_第3页
第3页 / 共21页
单片机88点阵屏设计.docx_第4页
第4页 / 共21页
单片机88点阵屏设计.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

单片机88点阵屏设计.docx

《单片机88点阵屏设计.docx》由会员分享,可在线阅读,更多相关《单片机88点阵屏设计.docx(21页珍藏版)》请在冰豆网上搜索。

单片机88点阵屏设计.docx

单片机88点阵屏设计

 

机电一体化实训设计(论文)

 

题目:

单片机8*8点阵屏设计

院(系):

机电工程学院

专业:

机械设计制造及其自动化

学生姓名

学号:

指导教师:

 

2015年1月8日

1设计目的

利用8*8LED点阵动态显示汉字的字样。

采用STC89C52单片机作为整个控制搭电路的核心,并编制软件程序,实现汉字动态显示。

通过此设计来巩固单片机硬件系统的设计及软件系统的编程,通过设计将平时所学知识付诸实践,提高动手能力。

1.使学生更深入地理解和掌握该课程中的有关基本概念,程序设计思想和方法。

2.培养学生勇于探索、严谨推理、实事求是、有错必改,用实践来检验理论,全方位考虑问题等科学技术人员应具有的素质。

3.提高学生对工作认真负责、一丝不苟,对同学团结友爱,协作攻关的基本素质。

4.培养学生从资料文献、科学实验中获得知识的能力。

5.对学生掌握知识的深度、运用理论去处理问题的能力、实验能力、课程设计能力、书面及口头表达能力进行考核。

2设计要求

1、设计一个8*8点阵LED电子显示屏

2、要求在目测条件下LED显示屏各点亮度均匀、充足,可显示图形和文字,显示图形和文字应稳定、清晰无串扰。

3设计的总体结构

3.1设计总体框图

 

3.2工作原理

由于是8*8点阵屏设计,需要端口16个,可采用静态显示模式,用P0口控制行,P1口控制列,通过软件编程,即可实现汉字的显示:

郭老师好,出入平安,动态流动显示。

如果是16*16点阵屏占用端口较多,则需采用动态扫描的方式实现。

3.3元器件清单:

元件名称

规格

数量

备注

STC89C52单片机

 

一块

附底座

晶振

12MHZ

一块

 

8*8点阵共阳LED显示器

共阳

一块

按钮开关

 

一个

四脚或两脚

极性电容

10uf

各一支

 

瓷片电容

30pf

两个

 

电阻

1kΩ、470Ω

八个、八个

 

电源插座

 

一个

 

电阻

10kΩ

两个

 

4各部分电路设计

4.1复位电路

单片机在启动运行时需要复位,使CPU以及其他功能部件处于一个确定的初始状态,并从这个状态开始工作,另外,在单片机工作过程中,如果出现死机时,也必须对单片机进行复位,使其重新开始工作。

本设计中采用按键复位电路,复位电路如图2所示:

 

4.2主体电路

通过单片机AT89S51的P0口和P2口去驱动点阵LED芯片块。

电路如图3所示:

4.3硬件电路连线

1.把“单片机系统”区域中的P0.0~P0.7端口分别通过八个100欧电阻连接到“点阵模块”区域中的“L1-L8”端口上;

2.把“单片机系统”区域中的P2.0~P2.7端口通过74HC573和10K电阻连接到“点阵模块”区域中的“S1-S8”端口上。

4.4显示部分

4.1 8X8 点阵LED工作原理说明

图4为8×8点阵LED外观及引脚图,其等效电路如图

(2)所示,只要其对应的X、Y轴顺向偏压,即可使LED发亮。

例如如果想使左上角LED点亮,则Y0=1,X0=0即可。

应用时限流电阻可以放在X轴或Y轴。

 

图48×8点阵LED外观及引脚图

其等效电路图如下:

 

图58×8点阵LED等效电路

5主要元器件介绍

5.1单片机介绍

所谓单片机,就是将CPU,RAM,ROM,定时/计数器和多种I/O接口电路都集成在一块集成芯片上的微型计算机。

MCS--51系列单片机是美国Intel公司在1980年推出的8位单片微型计算机,包含51和52两个子系列。

51子系列的典型产品有8031,8051和8751三种机型52子系列包括8032,8052二种主要机型。

51子系列的配置如下:

(1)8位CPU;

(2)振荡频率1.2~12MHZ;

(3)128个字节的片内数据存储器(片内RAM);

(4)21个专用寄存器;

(5)4KB的片内程序存储器(8031无);

(6)8位并行I/O口P0,P1,P2,P3;

(7)一个全双工串行I/O口;

(8)2个16位定时器/计数器;

(9)5个中断源,分为2个优先级;

本系统选用ATMEL89S51系列单片机,由于它的模块化设计为适应具体的应用提供了极大的灵活性,便于扩展功能,有效的提高了系统的经济性。

AT89S51是一种低工耗、高性能的片内含有4KB快闪可编程/擦除只读存储器的八位CMOS微控制器,使用高密度、非易失存储编程器对程序存储器重复编程。

AT89S51具有以下特点:

(1)与MCS-51微控制器产品系列兼容。

(2)片内有4KB可在线重复编程的快闪擦写存储器。

(3)32条可编程I/O线。

(4)程序存储器具有三级加密保护。

(5)可编程全全双工串行通道。

(6)空闲状态维持低功耗和掉电状态保存存储内容。

(7)而且与87C51系列的引脚也完全兼容。

89S51单片机结构如图所示:

 

 

51系列单片机的引脚功能:

主电源引脚Vss、Vcc

Vss:

接地,Vcc:

接+5V电源

外接晶振引脚XTAL1、XTAL2

XTAL1:

片内反向放大器输入端,XTAL2:

片内反向放大器输出端

输入/输出引脚P0、P1、P2、P3

P0.0~P0.7:

P0口的8个引脚,P0口是8位漏极开路型双向I/0端口,在接有片外存储器或I/0扩展接口时,P0.0~P0.7分时复用,作低8位地址总线与双向8位数据总线

P1.0~P1.7:

P1口的8个引脚,P1口是一个带内部上拉电阻的8位双向I/O口,对于52子系列,P1.0还可用于定时器/计数器2的计数脉冲输入端T2,P1.1还可作定时器/计数器2的外部控制端T2EX。

P2.0~P2.7:

P2口的8个引脚,P2口也是一个带内部上拉电阻的双向I/O口,在访问片外存储器或扩展I/O接口时,还用于提供高8位地址。

P3.0~P3.7:

P3口的8个引脚,P3口也是一个带上拉电阻的I/O口,除可以作双向的输入输出口外,还具有第2功能。

见表:

引脚

第二功能

P3.0

P3.1

P3.2

P3.3

P3.4

P3.5

P3.6

P3.7

RXD(串行口输入)

TXD(串行口输出)

INT0(外部中断0输入)

INT1(外部中断1输入)

T0(定时器0的外部中断)

T1(定时器1的外部中断)

WR(片外数据存储器写控制信号)

RD(片外数据存储器读控制信号)

控制线(4条):

ALE/PROG:

双功能引脚。

由于P0口的8个引脚是低8位地址总线与数据总线分时复用,因此必须将P0口输出的低8位地址进行锁存。

在访问片外存储器时,每机器周期该信号出现2次。

其下降沿用于控制锁存P0口输出的低8位地址。

即使不访问片外存储器,该引脚上仍出现上述频率的周期性信号,因此也可作为对外输出的时钟脉冲,频率为振荡器频率的1/6,必须注意的是:

在访问片内外存储器时,ALE脉冲会跳空1个。

对片内含有EPROM的机型,此引脚在编程时可作为编程脉冲PROG的输入端。

PSEN:

片外程序存储器读选通信号输出端,在CPU从片外程序存储器取指期间,此信号每个机器周期两次有效,以通过P0口读入指令,在访问片外数据存储器时,该信号不出现。

EA/Vpp:

双功能引脚,为片外程序存储器选用端。

当该引脚信号有效时,选择片外程序存储器,即EA/Vpp=1时,访问片内程序存储器。

对片内含有EPROM的机型,此引脚在编程期间用于施加+21v的编程电压。

RST/VPO:

双功能引脚,在单片机工作期间,当此引脚上出现连接2个机器周期的高电平时可实现复位操作。

在Vcc掉电期间,若该引脚接备用电源(+5v),可向片内RAM供电,以保存片内RAM中的信息。

5.2单片机系统设计

按照单片机系统扩展与系统配置状况,单片机应用系统可分为最小系统、最小功耗系统和典型应用系统等。

(1)最小应用系统:

能维持单片机运行的最简单配置的系统。

这种系统成本低廉、结构简单,常常构成一些简单的控制系统,如开关状态的输入/输出控制等。

对于片内有ROM/EPROM/FLASHRAM的单片机,构成最小应用系统时,只要将单片机接上时钟电路、复位电路和电源即可,如图所示。

 

图89S51单片机最小应用系统

由于集成度的限制,这种最小应用系统只能用作一些小型的控制单元。

其应用特点是:

①有可供用户使用的大量I/O口线,P0、P1、P2、P3都可用作用户I/O口用。

由于没有外部存储器扩展,

应接高电平。

②内部存储器容量有限(只有4KB地址空间)。

③应用系统开发具有特殊性。

由于这类应用系统应用程序量不大,外电路简单,因而采用模拟开发手段较好。

对于片内无ROM/EPROM/FLASHRAM的单片机,其最小系统除了外部配置时钟电路、复位电路和电源外,还应在片外扩展EPROM、EEPROM作为程序存储器用,如图3(b)所示,

应接地。

(2)最小功耗应用系统

最小功耗应用系统是指为了保证正常运行,系统的功率消耗最小。

这是单片机应用系统中的一个引人入目的构成方式。

在单片机芯片结构设计时,一般为构成最小功耗应用系统提供了必要条件,例如,各种系列的单片机都有CMOS工艺类型,而且在这类单片机中都设置了低功耗运行的WAIT和STOP方式。

设计最小功耗应用系统时,必须使系统内的所有器件、外设都有最小的功耗,而且能充分运用WAIT和STOP方式运行。

最小功耗应用系统常用在一些袖珍式智能仪表、野外工作仪表以及在无源网络、接口中的单片机工作子站。

5.3单片机的发展趋势

今后单片机的发展趋势,将是进一步向着多功能、高性能、高速度、低功耗、低价格、存储容量扩大和增强I/O功能及结构兼容等方面发展。

其发展趋势主要有以下几个方面:

1.多功能

在单片机中尽可能多地把应用所需的存储器、各种功能的I/O口都集成在一块芯片内,使单片机的功能更加强大。

如把LED、LCD或VFD显示驱动器也开始集成在8位单片机中。

2.高性能

进一步改进CPU的性能,加快指令运算的速度和提高系统控制的可靠性,采用精简指令系统计算机RISC(ReducedInstructionSetComputer)结构和流水线技术,大幅度提高运行速度。

现指令速度最高者已达100MIPS(MillionInstructionPerSeconds,即兆指令每秒),并加强了位处理功能、中断和定时控制功能,使单片机的性能明显地优于同类型的微处理器。

单片机集成度进—步提高,有的单片机的寻址能力已突破64KB的限制,8位、16位的单片机有的寻址能力已达到1MB和16MB。

片内ROM的容量可达64KB,RAM的容量可达2KB。

3.低电压、低功耗

允许使用的电压范围越来越宽,一般在36V范围内工作,有的已能在1.2V或0.9V电压下工作。

几乎所有的单片机都具有省电运行方式。

单片机的功耗已从mA级降到μA级,甚至1μA以下,在一粒钮扣电池下就可长期工作。

低功耗化的效应不仅是功耗低,而且带来了产品的高可靠性、高抗干扰能力以及产品的便携化。

4.低价格

单片机应用的另一显著特点是量大面广。

促使世界各国公司在提高单片机性能的同时,也十分注意降低价格。

如Z-8系列的Z8600、80C51系列的80C31每片仅售1-1.5美元。

提高性能价格比是各公司竞争的主要策略和不懈追求的目标。

5.374HC573芯片介绍

74HC573八进制3态非反转透明锁存器

74HC573高性能硅门CMOS器件 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机硬件及网络

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1