纳米光子学-第一讲.pdf
《纳米光子学-第一讲.pdf》由会员分享,可在线阅读,更多相关《纳米光子学-第一讲.pdf(26页珍藏版)》请在冰豆网上搜索。
1Lecture1:
LightInteractionwithMatter5nm2LightInteractionwithMatterMaxwellsEquations0=B=BEt=+DHJtDivergenceequationsCurlequationsf=DD=ElectricfluxdensityB=MagneticfluxdensityE=ElectricfieldvectorH=MagneticfieldvectorJ=currentdensity=chargedensity3ConstitutiveRelationsConstitutiverelationsrelatefluxdensitytopolarizationofamedium()0=+=DEPEEElectricpolarizationvectorMaterialdependent!
WhenPisproportionaltoEElectricE-+-Totalelectricfluxdensity=FluxfromexternalE-field+fluxduetomaterialpolarization=Materialdependentdielectricconstant0=Dielectricconstantofvacuum=8.8510-12C2N-1m-2F/m()00=+BHMHMagneticfluxdensityMagneticfieldvectorMagneticMagneticpolarizationvector0=permeabilityoffreespace=4x10-7H/mNote:
Fornow,wewillfocusonmaterialsforwhich0=M0=BH4DivergenceEquationsHowdidpeoplecomeupwith:
?
=DCoulombChargesofsamesignrepeleachother(+and+orand-)Chargesofoppositesignattracteachother(+and-)Heexplainedthisusingtheconceptofanelectricfield:
F=qEEverychargehassomefieldlinesassociatedwithit+-Hefound:
LargerchargesgiverisetostrongerforcesbetweenchargesCoulombexplainedthiswithastrongerfield(morefieldlines)5DivergenceEquationsEdS+GausssLaw(Gauss1777-1855)AAVdEddv=DSSE-fieldrelatedtoenclosedchargeGausssTheorem(verygeneral)AVddv=FSFCombiningthe2GausssAVVddvdv=DSD=D0Ad=BSTheotherdivergenceeq.0=Bisderivedinasimilarwayfrom6CurlEquationsHHowdidpeoplecomeupwith:
=+DHJtJHDDincreasingwhenchargingthecapacitorCA?
JAmpere(1775-1836)CAddt=+?
DHlJSChangesinel.fluxMagneticfieldinducedby:
Electricalcurrents7CurlEquationsCAddt=+?
DHlJS()CAdd=?
FlFSAmpere:
()CAAdddt=+?
DHlHSJSStokestheorem:
=+DHJtBECA=BEtOthercurleq.DerivedinasimilarwayfromCAddt=BElS?
()CAAdddt=?
BElESSStokes8SummaryMaxwellsEquationsDivergenceequationsCurlequations=BEt=D=+DHJt0=BFluxlinesstartandendonchargesorpolesChangesinfluxesgiverisetofieldsCurrentsgiverisetoH-fieldsNote:
Noconstantssuchas00,c,.appearwhenEqsarewrittenthisway.9TheWaveEquationPlausibilityargumentforexistenceofEMwavesEHHEE.Curlequations:
ChangingE-fieldresultsinchangingH-fieldresultsinchangingE-field.Therealthing()()2222,1,rtrtv=UUtGoal:
Deriveawaveequation:
forEandH()()()0,Reexptit=UrUrSolution:
Wavespropagatingwitha(phase)velocityvPositionTimeStartingpoint:
Thecurlequations10TheWaveEquationfortheE-field()()2222,1,rtrtv=EEtGoal:
0t=BHEtCurlEqs:
a)(MaterialswithM=0only)=+DHJtb)Step1:
TryandobtainpartialdifferentialequationthatjustdependsonEApplycurlonbothsideofa)()00tt=HHEStep2:
Substituteb)intoa)222000000222ttttt=DJEPJE0=+DEPCool!
.lookslikeawaveequationalready1122000022ttt=EPJE22221v=EEtWith:
!
()2=EEEUsevectoridentity:
VerifythatE=0when1)f=02)(r)doesnotvarysignificantlywithinadistance222000022ttt=+EPJEResult:
TheWaveEquationfortheE-fieldCompare:
1)FindP(E)2)FindJ(E)somethinglikeOhmslaw:
J(E)=Ewewilllookatthislater.fornowassume:
J(E)=0Inordertosolvethisweneed:
12DielectricMediaLinear,Homogeneous,andIsotropicMedia222000022ttt=+EPJEPlinearlyproportionaltoE:
0=PEisascalarconstantcalledthe“electricsusceptibility”Allthematerialsproperties()22220000002221ttt=+=+EEEE22002rt=EEResultsfromPDefinerelativedielectricconstantas:
1r=+
(2)2(3)3000.=+PEEENote1:
InanisotropicmediaPandEarenotnecessarilyparallel:
0iijjjPE=Note2:
Innon-linearmedia:
13PropertiesofEMWavesinBulkMaterialsWehavederivedawaveequationforEMwaves!
22002rt=EENowwhat?
Euh.Letslookatsomeoftheirproperties14SpeedofanEMWaveinMatterSpeedoftheEMwave:
22002rt=EE22221v=EEtCompareand2200011rrcv=Wherec02=1/(00)=1/(8.85x10-12C2/m3kg)(4x10-7mkg/C2)=(3.0x108m/s)2Opticalrefractiveindex1rcv=+Refractiveindexisdefinedby:
nNote:
Includingpolarizationresultsinsamewaveequationwithadifferentrcbecomesv15RefractiveIndexVariousMaterials2.03.01.03.40.11.010(m)Refractiveindex:
n16DispersionRelation()()(),Re,expztzikrit=+EE()()22222,tntc=ErErtDispersionrelation:
=(k)DerivedfromwaveequationSubstitute:
2222ckn=2222nkc=gvResult:
Checkthis!
kgdvdkGroupvelocity:
1phrcccvkn=+Phasevelocity:
17ElectromagneticWaves()()22222,tntc=ErErtSolutionto:
()()(),Re,exptiit=+ErEkkrMonochromaticwaves:
Checkthesearesolutions!
()()(),Re,exptiit=+HrHkkrTEMwaveSymmetryMaxwellsEquationsresultinEHpropagationdirectionOpticalintensity()()(),ttt=rErHrTimeaverageofPoyntingvector:
S18LightPropagationDispersiveMediaRelationbetweenPandEisdynamicTherelation:
assumesaninstantaneousresponse()()0,tt=PrEr()()()0,tdtxttt+=PrErInreallife:
PresultsfromresponsetoEoversomecharacteristictime:
Functionx(t)isascalarfunctionlastingacharacteristictime:
x(t-t)t=t-E(t)x(t-t)=0fortt(causality)tt=t19EMwavesinDispersiveMedia()()(),Re,exptiit=+ErEkkr()()()0,tdtxttt+=PrErRelationbetweenPandE