生化主要知识点复习总结.docx

上传人:b****4 文档编号:3070883 上传时间:2022-11-17 格式:DOCX 页数:22 大小:446.10KB
下载 相关 举报
生化主要知识点复习总结.docx_第1页
第1页 / 共22页
生化主要知识点复习总结.docx_第2页
第2页 / 共22页
生化主要知识点复习总结.docx_第3页
第3页 / 共22页
生化主要知识点复习总结.docx_第4页
第4页 / 共22页
生化主要知识点复习总结.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

生化主要知识点复习总结.docx

《生化主要知识点复习总结.docx》由会员分享,可在线阅读,更多相关《生化主要知识点复习总结.docx(22页珍藏版)》请在冰豆网上搜索。

生化主要知识点复习总结.docx

生化主要知识点复习总结

结构特点:

1.含苯环:

phe2.含酚羟基:

Tyr3.含吲哚环:

Trp

4.含羟基:

SerThr5.含硫:

CysMet6.含胍基:

Arg7.含咪唑基:

His

一、氨基酸的理化性质:

两性电离

等电点(pI)

在水溶液中能两性电离而成兼性离子

分子呈电中性时的溶液的pH值

紫外吸收

芳香族氨基酸特有(phe,Tyr,Trp)

吸收峰:

波长280nm

茚三酮反应

加热

氨基酸+茚三酮蓝紫色化合物

(570nm)

氨基酸的定量方法

二、蛋白质的空间结构

定义

维系键

举例

一级结构(primarystructure)

(1)多肽链中氨基酸(残基)的排列顺序。

(2)是蛋白质的基本结构。

(3)是空间结构、生理功能的基础。

肽键(二硫键)

二级结构(secondstructure)

多肽链中相邻氨基酸残基形成的局部肽链空间结构,其主链原子的局部空间排布,并不涉及氨基酸残基侧链的构像。

氢键

超二级结构(supersecondarystructure)

和结构域(domain)

超二级结构

(模体,motif)

蛋白质多肽链上的一些二级结构单元,有规律地聚集起来,形成αα,βββ,βαβ,β2α,αTα等结构

基因表达调控中的转录因子(具备功能)(锌指,亮氨酸拉链、αTα、β2α)

结构域(domain)

单个或多个超二级结构进一步集结形成在蛋白质分子空间结构中可明显区分的区域

脱氢酶蛋白、细胞膜受体蛋白

三级结构(tertiarystructure)

在二级结构的基础上,包括相距较远的氨基酸残基及其侧链R基团形成的整个多肽链的空间构象。

特点:

为球状或者为椭圆状蛋白质,具有生命活性,可形成亲水表面和疏水核。

疏水键

肌红蛋白

免疫球蛋白

四级结构(quaternarystucture)

指几个各具独立三级结构的多肽链之间的相互集结,并以特定的方式接触,排列形成更高层次的大分子空间构象

亚基:

1.具备三级结构,单独存在无活性

2.存在于四级结构中

亚基间以盐键相连

Hb血红蛋白

蛋白质结构与功能的关系

举例

一级结构

1、一级结构不同,功能不同

2、一级结构相同,功能相同

3、一级结构中非关键部位氨基酸残基发生变化,不影响生物活性。

4、一级结构中关键部位氨基酸残基发生变化,可导致功能变化。

1.非关键部位:

人、猪、牛胰岛素

2.关键部位:

镰刀型细胞贫血症(β链N端第6个氨基酸为Glu

突变为Val)HbS携氧能力下降,缺氧时RBC呈镰刀状,脆性增加,溶血

空间结构

特定功能,特定构象:

α-螺旋:

指甲/毛发中角蛋白;π螺旋:

肌腱/皮肤中胶原蛋白

β-片层:

蚕丝中丝心蛋白;离子通道

α螺旋

主链右手螺旋(单链),3.613螺旋

氢键方向与螺旋纵轴平行,链氢键是α螺旋稳定的主要因素

侧链基团位于螺旋外,不参与的组成,但对螺旋的形成与稳定有影响

α螺旋稳定蛋白质空间构象

β折叠:

伸展的肽链结构

肽键平面之间折叠成锯齿状,相邻两平面呈110度

结构的维系依靠肽链间的氢键,氢键的方向与肽链长轴垂直

肽链的N末端在同一侧---顺向平行,反之为反向平行。

β转角:

肽链出现180°转回折的“U”结构

由第1个氨基酸残基的C=O与第4个氨基酸残基的N-H形成氢键,中间包括10~12个原子,

较α螺旋紧密

常位于球蛋白分子表面,为蛋白质活性的重要空间结构部分

π螺旋:

左手螺旋

4.418,氢键维系螺旋稳定

多见于胶原蛋白,3股左手螺旋盘绕形成右手超螺旋后转变为胶原纤维

无规则卷曲:

是蛋白质中一系列无序构象的总称

是蛋白质分子结构与功能的重要肽段

三、蛋白质变性:

变性因素

物理或化学因素

(加热、酸、碱、有机溶剂、重金属离子等)

机制

蛋白质空间结构破坏,一级结构未破坏

性质的变化

(理化性质的改变和生物活性的丢失)

溶解度降低/黏度增加

结晶能力消失/生物活性丧失

易被蛋白酶水解

实际应用

防止蛋白制剂/蛋白质药物的变性失活(低温保存)

使细菌蛋白质变性失活,消毒杀菌(紫外线杀菌等)

四、核苷酸

1、核苷酸的生物学功能:

核酸构件分子---一磷酸核苷;重要能量载体---ATP;参与糖原合成---UTP

参与磷脂合成---CTP;信号分子-------cAMP,cGMP;辅酶-----------FAD/FMN,NAD/NADP

一磷酸核苷(NMP/dNMP)

核酸的构件分子

二磷酸核苷(NDP/dNDP)

NDPdNDP能量储存的载体(ADPATP)

三磷酸核苷(NTP/dNTP)

RNA/DNA合成原料,参与能量代(ATP);参与物质代(UTP,

2.核酸的一级结构核酸的空间结构与功能:

一级结构(DNA/RNA)

核苷酸的排列顺序

碱基的排列顺序

DNA空间结构

二级结构--双螺旋结构

超螺旋结构/染色质

原核生物:

封闭的环状双螺旋

真核生物:

核小体→染色质→染色体(DNA+组蛋白)

功能

基因形式携带遗传信息

基因:

DNA分子中特定区域,核苷酸的排列顺序

基因组:

DNA分子的全序列

所有编码RNA和蛋白质的序列+所有非编码序列

五、DNA双螺旋结构模型要点:

反向平行

互补双链

3’→5’/5’→3’

A=TG≡C

右手螺旋(B型)

侧:

A=T/G≡C碱基对平面与螺旋中心轴垂直

外侧:

核糖和磷酸(亲水)

螺旋表面:

大沟/小沟

是DNA与蛋白质识别、结合的部位

维持DNA双螺旋结构稳定因素

碱基平面间的疏水堆积力

碱基对间的氢键

DNA双螺旋结构多样性

A型:

右手螺旋/较B型粗

Z型:

左手螺旋/呈锯齿状

六、RNA结构:

RNA空间结构

单链/局部双螺旋

tRNA

含有稀有碱基

一级结构:

单链多核苷酸

二级结构:

三叶草型

三级结构:

倒L型

反密码环--含反密码子

氨基酸臂--携带氨基

3’端:

-CCA

参与蛋白质的组成

识别密码子

转运氨基酸

rRNA

核糖体=rRNA+多种核糖体蛋白(rP)

蛋白质合成场所

原核生物

真核生物

rRNA种类

5S16S33S

5S5.8S18S28S

核糖体(rRNA+rp)

70S

(30S小亚基50S大亚基)

80S

(40S小亚基60S大亚基)

真核生物的mRNA

参与蛋白质合成

遗传信息的传递

初级转录物

核不均一RNA(hnRNA)

外显子+含子

成熟mRNA

(无含子)

mRNA

=5’端帽子结构+5’非翻译区+编码区(外显子)+3’非翻译区+polyA

5’端帽子结构:

m7GpppN

3’端尾结构:

polyA

RNA组学

研究snmRNAs种类/结构/功能

snmRNAs

除三种RNA以外的小分子RNA

snRNA

sonRNA

scRNA

作用于hnRNA/rRNA

转录后加工/转运/基因表达调控

蛋白质质网定位合成的信号识别体的组成部分

siRNA

外源性基因入侵双链RNA(mRNA)

宿主产生特定长度(21核苷酸)/特定序列

小片段RNA(siRNA)

siRNA+mRNAmRNA降解

RNA干扰技术(RNAi)

核酶

某些RNA本身具有催化活性

底物是核酸

七、核酸的变性、复性与杂交

 

核酸变性

物化因素

DNA双链单链

碱基氢键断裂

一级结构不变

增色效应:

核酸变性时其260nm紫外线吸收值增加

(核酸变性时由分子氢键破坏,2条核苷酸链解开,原来重叠在分子部的碱基得以暴露,导致变性DNA260nm紫外线吸收值发生升高的现象。

熔解温度(变性温度,Tm)

DNA加热变性,其260nm紫外线吸收值达最大吸收值一半时的温度

Tm与CG含量成正比,Tm围:

85-950C

Tm值与DNA溶液中离子强度成正比(DNA样品不易保存在纯水中)

核酸复性

适当条件

变性DNA双螺旋DNA

(两条单链)

退火(annealing)

缓慢冷却(Tm-25℃)

热变性DNA双螺旋DNA

杂交

不同种类DNA单链/RNA

碱基配对适宜条件

杂化双链

(DNA-DNA/DNA-RNA/RNA-RNA)

基因的位置

鉴定两种核酸的相似性

检测某些专一序列在待检样品中存在与否:

基因芯片

举例:

HbAα2β2+血红素

亚基之一与O2结合

导致亚基间的盐键断裂

构象轻微变化(紧密T型松弛R型)

其它亚基与O2结合力

八、生物催化物质部分概念总结:

概念

由活细胞产生的一类具催化功能的蛋白质(或RNA),又称生物催化剂

酶的催化特点

1.高度专一性:

一种酶催化一种底物反应

2.高催化效率

3.催化活性可调节(蛋白质别构)

4.高度不稳定性(蛋白质变性)

5.催化活性不依赖完整的细胞存在(人工方法提取、体外催化)

6.并非都是蛋白质,催化性RNA(Ribozyme)

酶的组成

单纯酶

蛋白质酶蛋白(特异性)

结合酶金属离子辅基

非蛋白成分铁卜啉辅助因子

辅酶

含B族维生素的

小分子有机物

辅基

非蛋白部分若与酶蛋白以共价键相连,不能用透析或超滤的方法分开

辅酶

非蛋白部分若与酶蛋白以非共价键相连,能用透析或超滤的方法分开

酶的活性中心

在酶分子上有一个必需基团较集中并构成一定空间构象的区域,此区域能与底物结合并催化底物转变为产物。

(activecenter)

必需基团

活性中心的必需基团结合基团

催化基团

活性中心外的必需基团

酶原(zymogen)

有些酶在细胞合成或刚分泌时,无催化活性,这种无催化活性的酶的前体称为酶原。

例如:

胃蛋白酶原、胰蛋白酶原、凝血因子

酶原激活

酶原在一定条件下,经活化素作用转变为有活性的酶的过程。

(activationofzymogen)

酶原激活的本质

酶的活性中心形成,酶原切段酶原分子中特异肽健或去除部分肽段,有利于活性中心的形成。

酶原激活的意义

1.合成酶的细胞本身不受蛋白酶的消化而破坏。

例:

消化道酶

2.使酶在规定的部位受激活并发挥生理作用。

例:

凝血因子

同工酶

催化相同的化学的反应,但酶蛋白的分子结构、理化性质,与免疫原性各不相同的一类酶。

即酶分子结构不同而活性中心相似的酶。

(isoenzyme)

多酶复合体

体有些酶彼此聚合在一起,组成一个物理的结合体,此结合体称为多酶复合体,是生物体提高酶催化效率的一种措施。

例:

丙酮酸脱氢酶复合体,脂肪酸β氧化的多酶复合体

多酶体系

体物质代的各条途径往往有许多酶共同参与,依次完成反应过程,在结构上无彼此联系,称为多酶体系。

例:

参与糖酵解的11个酶。

多功能酶

一个酶具有多种催化功能。

例:

DNA聚合酶I

激活剂

:

能使酶活性提高的物质

酶的抑制作用

在抑制剂的作用下,酶活性中心或必需基团发生性质的改变并导致酶活性降低或丧失的过程。

不可逆性抑制

抑制剂以共价键与酶的必需基团结合。

不能用透析或超滤方法分开。

1.非专一

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1