哈工大 电机学 MATLAB 仿真 实验报告.docx

上传人:b****5 文档编号:30240511 上传时间:2023-08-13 格式:DOCX 页数:21 大小:197.72KB
下载 相关 举报
哈工大 电机学 MATLAB 仿真 实验报告.docx_第1页
第1页 / 共21页
哈工大 电机学 MATLAB 仿真 实验报告.docx_第2页
第2页 / 共21页
哈工大 电机学 MATLAB 仿真 实验报告.docx_第3页
第3页 / 共21页
哈工大 电机学 MATLAB 仿真 实验报告.docx_第4页
第4页 / 共21页
哈工大 电机学 MATLAB 仿真 实验报告.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

哈工大 电机学 MATLAB 仿真 实验报告.docx

《哈工大 电机学 MATLAB 仿真 实验报告.docx》由会员分享,可在线阅读,更多相关《哈工大 电机学 MATLAB 仿真 实验报告.docx(21页珍藏版)》请在冰豆网上搜索。

哈工大 电机学 MATLAB 仿真 实验报告.docx

哈工大电机学MATLAB仿真实验报告

 

基于MATLAB的电机学计算机辅助分析与仿真

 

实验报告

 

班级:

学号:

姓名:

完成时间:

一、实验内容

1.1单相变压器不同负载性质的相量图

通过MATLAB画出单相变压器带感性,阻性,容性三种不同性质负载的变压器向量图

1.2感应电机的

曲线

通过MATLAB画出三相感应电动机的转矩转差率曲线

二、实验要求

2.1单相变压器不同负载性质的相量图

根据给定的仿真实例画出负载相位角

三种情况下得向量图,观察电压大小与相位的关系,了解总结负载性质不同对向量图的影响

2.2感应电机的

曲线

根据给定的实例,画出

曲线,了解感应电机临界转差率的大小和稳定工作区间的大小,给出定性分析

三、实验方法

3.1单相变压器不同负载性质的相量图

1.单相变压器不同负载性质的相量图

(1)先画出负载电压

的相量;

(2)根据负载的性质和阻抗角画出二次电流(规算值)的相量

(3)在

上加上一个与电流方向相同的压降,其大小为二次电流规算值

与二次漏电阻规算值

之积;再加上一个超前电流方向

的压降,其大小为二次电流

规算值与二次漏电抗规算值

之积;

(4)根据上一步结果连线,得出

(5)超前

方向

画出

(6)根据励磁电阻与电抗的大小得出励磁阻抗角,并超前

一个励磁阻抗角的大小得出

的方向;

(7)根据平行四边形法则,做出

的和,即为

(8)根据

得出

,并得出

(9)在

上加上一个与电流方向相同的压降,其大小为一次电流

与一次漏电阻

之积;再加上一个超前电流方向

的压降,其大小为一次电流

与一次漏电抗

之积;

(10)根据上一步结果连线,得出

3.2感应电机的

曲线

实验采用matlab对转矩转差率曲线进行仿真。

由转矩转差率关系公式知,

只有s为自变量,其他参数均为已知。

编程时,先取s在0.01-1.3正区间的

,进行绘图;再取相应负区间对

绘图;最后加入(0,0)

四、实验源程序(1分)

4.1单相变压器不同负载性质的相量图

见附录

4.2感应电机的T-S曲线

%T-S曲线绘制

%定义常量

R2=0.04;

R1=0.06;

M1=3;

U1=380;

W=2*pi*1485/60;

X1=0.27;

X2=0.56;

C=1+X1/16.4;

%画出s=0.01~1.3的T-S曲线

s=0.01:

0.01:

1.3;

T=ones(1,length(s));

fori=1:

length(s)

T2(i)=R2/s(i);

T1(i)=1/((R1+C*T2(i))^2+(X1+C*X2)^2);

T3(i)=1/W;

T(i)=M1*U1^2*T1(i)*T2(i)*T3(i);

end

%画出s=-0.01~-1.3的T-S曲线

s1=-1.3:

0.01:

-0.01;

T1=ones(1,length(s1));

fori=1:

130

T21(i)=R2/s1(i);

T11(i)=1/((R1+C*T21(i))^2+(X1+C*X2)^2);

T31(i)=1/W;

T1(i)=M1*U1^2*T11(i)*T21(i)*T31(i);

end

%将(0,0)加入曲线中,合并成完整的向量

ss=[s10s];

TT=[T10T];

plot(ss,TT);

%改变x轴方向

set(gca,'XDir','rev');

title('感应电机转矩转差率曲线');

xlabel('rotatingspeedslip(%)')

ylabel('Torque(Nm)')

五、实验结果

5.1单相变压器不同负载性质的相量图

不同性质负载对相量图带来的影响:

(1)二次电流I2在负载性质为感性、容性时分别超前、滞后负载电压U2一个阻抗角的大小;纯阻性负载时I2与U2同方向;

(2)在容性负载时,负载电压U2有可能大于感应电动势E2。

5.2感应电机的T-S曲线

实验结果如下:

通过Matlab仿真得到感应电机的

曲线如下图;可以看出实验的曲线和理论预测基本相符,实验的仿真结果较为成功。

曲线的特点:

(1)曲线不是单调的而是像一个山峰一样,存在最大转矩点和对应的临界转差率。

(2)从特性上看,电机的最大转矩很大,但是对应

的起动点,转矩却很小;

(3)曲线的正负半区基本对称

六、心得体会

做负载性质的的实验时,最先遇到的问题就是如何画出向量图,我们查找了许多资料,例如使用compass函数,但compass函数是从原点开始画向量图,且有背景,又如quiver函数,也不能满足要求,最后决定自己在线段终点处画出两个微小的与该线段成一比较小的角度的线段作为箭头,这也是我本次一个很大的收获,学会灵活的运用知识,而不是一味想使用程序内置的函数,做实验,搞科研的时候要灵活。

在绘制不同负载的曲线时,我也进一步的理解了曲线的绘制步骤,对单相变压器有了更深的理解。

在绘制T-S时,我们同样也遇到了问题,当程序第一次运行时,会出现错误的提示,就是向量的长度不匹配,但是第二次运行却能够正常运行。

调试了多次后还是没有结果,最后在老师的帮助下,我们终于找到了原因,所使用的矩阵应该先声明一个长度与其等式另一侧的矩阵维数相匹配,才能够正常运行。

在绘制T-S时,我也更加理解了转矩与转差率的关系,也了解了电机的起动转矩和最大转矩,以及稳定运行的区间。

通过这次实验,我更加意识到了MATLAB的重要性,虽然上学期我们学习了数学实验这门课,并且初步学习了Matlab的使用方法,但是数学实验上所学的毕竟只是基本的操作和一些简单的程序,没有经过大的检验和锻炼。

当这次作业再一次重新使用MATLAB时,起初感觉十分的不熟练,之后抽出一部分时间练习Matlab。

正所谓磨刀不误砍柴工,通过训练,我的Matlab越来越熟练,后面的工作也越来越快。

未来我们的工作离不开计算机,未来熟练的掌握计算机基础知识对于我们来说是十分必要的。

这次实验,不仅提高了我的电机学知识水平,也帮助我更加熟练地掌握的MATLAB的使用方法,对以后的工作学习有着巨大的帮助。

最重要的是,我们的成功离不开老师的耐心指导,我们的几个难点都是在老师的耐心帮助下才得以解决的。

可以说,老师的帮助与指导与我们的成功密不可分。

七、附录

%单相变压器负载运行时不同负载阻抗下的向量图

clear;clf;clc;

f=50;N1=876;N2=260;u2=6000;i2=180;

k=N1/N2;

%调整阻、抗的比例

r1n=5.5;x1n=12.4;rm=850;xm=8600;

r2n=k^2*0.45;x2n=k^2*0.964;

%变压器二次侧负载阻抗角,取-90-3003090

theta=-30;

%为了使图形更加直观,放大原副端阻抗三角形

beta=8;

r1=beta*r1n;r2=beta*r2n;x1=beta*x1n;x2=beta*x2n;

Z1=r1+j*x1;Z2=r2+j*x2;

u22=k*u2;i22=i2/k;

%U2的大小

U2=u22;

%U2与x轴的夹角

theta_U2=atan2(imag(U2),real(U2));

%I2落后与U2

I2=i22*(cos(theta*pi/180)+j*sin(theta*pi/180));

theta_I2=atan2(imag(I2),real(I2));

%求出E2

E2=U2+I2*Z2;

theta_E2=atan2(imag(E2),real(E2));

E1=E2;

theta_E1=atan2(imag(E1),real(E1));

%为了使图形更加直观,放大Im

kim=1.5;

%求出主磁通

fai=kim*E1/(-j*4.44*f*N1);

theta_fai=atan2(imag(fai),real(fai));

theta_fai1=theta_fai-pi/2;

%求出Im

Im=beta*(-E1)/(rm+j*xm);

theta_Im=atan2(imag(Im),real(Im));

%求出I1

I1=Im-I2;

theta_I1=atan2(imag(I1),real(I1));

%求出U1

U1=-E1+I1*r1+j*I1*x1;

theta_U1=atan2(imag(U1),real(U1));

ur1=I1*r1;theta_ur1=atan2(imag(ur1),real(ur1));

ux1=j*I1*x1;theta_ux1=atan2(imag(ux1),real(ux1));

ur2=I2*r2;theta_ur2=atan2(imag(ur2),real(ur2));

ux2=j*I2*x2;theta_ux2=atan2(imag(ux2),real(ux2));

rot_fai=abs(fai)*i;fai_amp=rot_fai*1e5;fai_ampr=real(fai_amp);fai_ampi=imag(fai_amp);

rot_U2=abs(U2)*(cos(theta_U2-theta_fai1)+j*sin(theta_U2-theta_fai1));

U2r=real(rot_U2);

U2i=imag(rot_U2);

rot_E1=abs(E1)*(cos(theta_E1-theta_fai1)+j*sin(theta_E1-theta_fai1));

rE1r=real(-rot_E1);rE1i=imag(-rot_E1);

rot_U1=abs(U1)*(cos(theta_U1-theta_fai1)+j*sin(theta_U1-theta_fai1));

U1r=real(rot_U1);

U1i=imag(rot_U1);

rot_E2=abs(E2)*(cos(theta_E2-theta_fai1)+j*sin(theta_E2-theta_fai1));

E2r=real(rot_E2);E2i=imag(rot_E2);

rot_ur1=abs(ur1)*(cos(theta_ur1-theta_fai1)+j*sin(theta_ur1-theta_fai1));

ur1r=real(rot_ur1);ur1i=imag(rot_ur1);

rot_ux1=abs(ux1)*(cos(theta_ux1-theta_fai1)+j*sin(theta_ux1-theta_fai1));

ux1r=real(rot_ux1);ux1i=imag(rot_ux1);

rot_ur2=abs(ur2)*(cos(theta_ur2-theta_fai1)+j*sin(theta_ur2-theta_fai1));

ur2r=real(rot_ur2);ur2i=imag(rot_ur2);

rot_ux2=abs(ux2)*(cos(theta_ux2-theta_fai1)+j*sin(theta_ux2-theta_fai1));

ux2r=real(rot_ux2);ux2i=imag(rot_ux2);

rot_I1=abs(I1)*(cos(theta_I1-theta_fai1)+j*sin(theta_I1-theta_fai1));

I1r=real(rot_I1);I1i=imag(rot_I1);

rot_I2=abs(I2)*(cos(theta_I2-theta_fai1)+j*sin(theta_I2-theta_fai1));

I2r=real(rot_I2);I2i=imag(rot_I2);

rot_Im=abs(Im)*(cos(theta_Im-theta_fai1)+j*sin(theta_Im-theta_fai1));

Imr=real(rot_Im);Imi=imag(rot_Im);

holdon

a=[00];

b=[U2rU2i];text(1.5e4,-0.5e4,'U2','Fontsize',10);

x0=a

(1);y0=a

(2);x1=b

(1);y1=b

(2);

plot([x0;x1],[y0;y1],'r');

p=(b-a);alpha=0.1;beta=0.1;

hu=[x1-alpha*(p

(1)+beta*(p

(2)+eps));x1;x1-alpha*(p

(1)-beta*(p

(2)+eps))];

hv=[y1-alpha*(p

(2)-beta*(p

(1)+eps));y1;y1-alpha*(p

(2)+beta*(p

(1)+eps))];

plot(hu(),hv(),'r');

%为了更好的看到电流,将电流放大观察,kii

figure

(1);

kii=200;

b=kii*[I1r,I1i];vectarrow(a,b);

b=kii*[-I2r,-I2i];vectarrow(a,b);

b=kii*[I2r,I2i];vectarrow(a,b);

b=kii*[Imr,Imi];vectarrow(a,b);

b=[E2rE2i];vectarrow(a,b);

b=[rE1rrE1i];vectarrow(a,b);

b=[fai_amprfai_ampi];vectarrow(a,b);

b=[U1rU1i];

text(1.5e4,0.2e4,'E2','Fontsize',10);

text(-1.75e4,0.2e4,'-E1','Fontsize',10);

text(0.2e4,1.0e4,'Φ','Fontsize',10);

%text(0.4e4,-0.6e4,'I2','Fontsize',10);

text(-1.8e4,-0.4e4,'U1','Fontsize',10);

x0=a

(1);y0=a

(2);x1=b

(1);y1=b

(2);

plot([x0;x1],[y0;y1],'r');

p=(b-a);alpha=0.1;beta=0.1;

hu=[x1-alpha*(p

(1)+beta*(p

(2)+eps));x1;x1-alpha*(p

(1)-beta*(p

(2)+eps))];

hv=[y1-alpha*(p

(2)-beta*(p

(1)+eps));y1;y1-alpha*(p

(2)+beta*(p

(1)+eps))];

plot(hu(),hv(),'r');

bur1r=ur1r+rE1r;bur1i=ur1i+rE1i;

a=[rE1rrE1i];

b=[bur1r,bur1i];vectarrow(a,b);

a=[bur1r,bur1i];

b=[(bur1r+ux1r)(bur1i+ux1i)];vectarrow(a,b);

a=[U2rU2i];

b=[(U2r+ur2r)(U2i+ur2i)];vectarrow(a,b);

a=[(U2r+ur2r)(U2i+ur2i)];

b=[(U2r+ur2r+ux2r)(U2i+ur2i+ux2i)];vectarrow(a,b)

axis([-3.5e43.5e4-3.5*1e43.5*1e4]);

axissquare;

gridon

title('单相变压器的相量图(感性负载)');

theta=0;

figure

(2);

%为了使图形更加直观,放大原副端阻抗三角形

beta=8;

r1=beta*r1n;r2=beta*r2n;x1=beta*x1n;x2=beta*x2n;

Z1=r1+j*x1;Z2=r2+j*x2;

u22=k*u2;i22=i2/k;

U2=u22;theta_U2=atan2(imag(U2),real(U2));

I2=i22*(cos(theta*pi/180)+j*sin(theta*pi/180));

theta_I2=atan2(imag(I2),real(I2));

E2=U2+I2*Z2;theta_E2=atan2(imag(E2),real(E2));

E1=E2;

theta_E1=atan2(imag(E1),real(E1));

%为了使图形更加直观,放大Im

kim=1.5;

fai=kim*E1/(-j*4.44*f*N1);

theta_fai=atan2(imag(fai),real(fai));theta_fai1=theta_fai-pi/2;

Im=beta*(-E1)/(rm+j*xm);

theta_Im=atan2(imag(Im),real(Im));

I1=Im-I2;

theta_I1=atan2(imag(I1),real(I1));

U1=-E1+I1*r1+j*I1*x1;

theta_U1=atan2(imag(U1),real(U1));

ur1=I1*r1;theta_ur1=atan2(imag(ur1),real(ur1));

ux1=j*I1*x1;theta_ux1=atan2(imag(ux1),real(ux1));

ur2=I2*r2;theta_ur2=atan2(imag(ur2),real(ur2));

ux2=j*I2*x2;theta_ux2=atan2(imag(ux2),real(ux2));

rot_fai=abs(fai)*i;fai_amp=rot_fai*1e5;fai_ampr=real(fai_amp);fai_ampi=imag(fai_amp);

rot_U2=abs(U2)*(cos(theta_U2-theta_fai1)+j*sin(theta_U2-theta_fai1));

U2r=real(rot_U2);

U2i=imag(rot_U2);

rot_E1=abs(E1)*(cos(theta_E1-theta_fai1)+j*sin(theta_E1-theta_fai1));

rE1r=real(-rot_E1);rE1i=imag(-rot_E1);

rot_U1=abs(U1)*(cos(theta_U1-theta_fai1)+j*sin(theta_U1-theta_fai1));

U1r=real(rot_U1);

U1i=imag(rot_U1);

rot_E2=abs(E2)*(cos(theta_E2-theta_fai1)+j*sin(theta_E2-theta_fai1));

E2r=real(rot_E2);E2i=imag(rot_E2);

rot_ur1=abs(ur1)*(cos(theta_ur1-theta_fai1)+j*sin(theta_ur1-theta_fai1));

ur1r=real(rot_ur1);ur1i=imag(rot_ur1);

rot_ux1=abs(ux1)*(cos(theta_ux1-theta_fai1)+j*sin(theta_ux1-theta_fai1));

ux1r=real(rot_ux1);ux1i=imag(rot_ux1);

rot_ur2=abs(ur2)*(cos(theta_ur2-theta_fai1)+j*sin(theta_ur2-theta_fai1));

ur2r=real(rot_ur2);ur2i=imag(rot_ur2);

rot_ux2=abs(ux2)*(cos(theta_ux2-theta_fai1)+j*sin(theta_ux2-theta_fai1));

ux2r=real(rot_ux2);ux2i=imag(rot_ux2);

rot_I1=abs(I1)*(cos(theta_I1-theta_fai1)+j*sin(theta_I1-theta_fai1));

I1r=real(rot_I1);I1i=imag(rot_I1);

rot_I2=abs(I2)*(cos(theta_I2-theta_fai1)+j*sin(theta_I2-theta_fai1));

I2r=real(rot_I2);I2i=imag(rot_I2);

rot_Im=abs(Im)*(cos(theta_Im-theta_fai1)+j*sin(theta_Im-theta_fai1));

Imr=real(rot_Im);Imi=imag(rot_Im);

holdon

a=[00];

b=[U2rU2i];text(1.5e4,-0.5e4,'U2','Fontsize',10);

x0=a

(1);y0=a

(2);x1=b

(1);y1=b

(2);

plot([x0;x1],[y0;y1],'r');

p=(b-a);alpha=0.1;beta=0.1;

hu=[x1-alpha*(p

(1)+beta*(p

(2)+eps));x1;x1-alpha*(p

(1)-beta*(p

(2)+eps))];

hv=[y1-alpha*(p

(2)-beta*(p

(1)+eps));y1;y1-alpha*(p

(2)+beta*(p

(1)+eps))];

plot(hu(),hv(),'r');

%为了更好的看到电流,将电流放大观察,kii

kii=200;

b=kii*[I1r,I1i];vectarrow(a,b);

b=kii*[-I2r,-I2i];vectarrow(a,b);

b=kii*[I2r,I2i];vectarrow(a,b);

b=kii*[Imr,Imi];vectarrow(a,b);

b=[E2rE2i];vectarrow(a,b);

b=[rE1rrE1i];vectarrow(a,b);

b=[fai_amprfai_ampi];vectarrow(a,b);

b=[U1rU1i];

text(1.5e4,0.2e4,'E2','Fontsize',10);

text(-1.75e4,0.2e4,'-E1','Fontsize',10);

text(0.2e4,1.0e4,'Φ','Fontsize',10);

%text(0.4e4,-0.6e4,'I2','Fontsize',10);

text(-1.8e4,-0.4e4,'U1','Fontsize',10);

x0=a

(1);y0=a

(2);x1=b

(1);y1=b

(2);

plot([x0;x1],[y0;y1],'r');

p=(b-a);alpha=0.1;beta=0.1;

hu=[x1-alpha*(p

(1)+beta*(p

(2)+eps));x1;x1-alpha*(p

(1)-beta*(p

(2)+eps))];

hv=[y1-alpha*(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 初中作文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1