碳酸盐岩石物理问题.docx

上传人:b****5 文档编号:30189779 上传时间:2023-08-05 格式:DOCX 页数:12 大小:194.58KB
下载 相关 举报
碳酸盐岩石物理问题.docx_第1页
第1页 / 共12页
碳酸盐岩石物理问题.docx_第2页
第2页 / 共12页
碳酸盐岩石物理问题.docx_第3页
第3页 / 共12页
碳酸盐岩石物理问题.docx_第4页
第4页 / 共12页
碳酸盐岩石物理问题.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

碳酸盐岩石物理问题.docx

《碳酸盐岩石物理问题.docx》由会员分享,可在线阅读,更多相关《碳酸盐岩石物理问题.docx(12页珍藏版)》请在冰豆网上搜索。

碳酸盐岩石物理问题.docx

碳酸盐岩石物理问题

CarbonateRockPhysicsIssues

EnruLiu,MichaelA.Payne,ShiyuXu,GregorBaechle,ChristopherE.Harris/ExxonMobilUpstreamResearchCopyright2009,InternationalPetroleumTechnologyConference

ThispaperwaspreparedforpresentationattheInternationalPetroleumTechnologyConferenceheldinDoha,Qatar,7–9December2009.

ThispaperwasselectedforpresentationbyanIPTCProgrammeCommitteefollowingreviewofinformationcontainedinanabstractsubmittedbytheauthor(s).Contentsofthepaper,aspresented,havenotbeenreviewedbytheInternationalPetroleumTechnologyConferenceandaresubjecttocorrectionbytheauthor(s).Thematerial,aspresented,doesnotnecessarilyreflectanypositionoftheInternationalPetroleumTechnologyConference,itsofficers,ormembers.PaperspresentedatIPTCaresubjecttopublicationreviewbySponsorSocietyCommitteesofIPTC.Electronicreproduction,distribution,orstorageofanypartofthispaperforcommercialpurposeswithoutthewrittenconsentoftheInternationalPetroleumTechnologyConferenceisprhoehribitend.bPyermissiotntorepperroduacseirnprintisresrtirictLeidbtoriaanaIbstra,ct.of.notxm8ore3th3a,n3i0c0awrordos;,illuXstr5ation-sm83a6y,no.t.be,cfoapxie+d.The-9abstra4ctm.ustcontainconspicuousacknowledgmentofAbstract

Summary

Limestoneanddolomitereservoirsaccountforapproximately50%ofoilandgasproductionworldwide,yetseismicresponsesincarbonaterocksarepoorlyunderstood.Developmentofacarbonaterockphysicsmodelisextremelydifficultbecauseporesystemsaremorecomplexincarbonatesthantheyareinclastics.Carbonatescanhaveavarietyofporetypes,suchasmoldic,vuggy,interparticle,andintraparticle.Thecomplexporesystemcreatessignificantscatterintheporosity-velocityrelationship,asindicatedinexperimentalresults(e.g.,AnselmettiandEberli,2001).Poreshapeappearstobethedominantfactorincarbonaterockphysics.Moldic,intraframe,andvuggyporestendtoberoundedandmaketherockstronger(faster)thanwhentheporesareinterparticle.Micropores(e.g.,microcracks)tendtobeflatandmaketherockweaker.Toeffectivelycharacterizecarbonatereservoirrocks,itiscriticaltodeveloparockphysicsmodelcapableofhandlingdifferentporetypes.

Inadditiontoporetypesandporeshapes,otherfactorsneedtobeincludedinaphysics-basedrockmodel.Somespecificadditionalfactorsarelithologyandgrainshapes,multiphasefluidsandwettingeffects,rock-fluidinteractions(poro-elasticity),stresseffects,anisotropy,heterogeneityandscaleeffects,chemicalchangestotheframework,andcorrectionsforenvironmentaleffectsduetologgingconditions.Anyrockphysicsmodelshouldbecalibratedandvalidatedwithcontrolledlaboratoryexperiments,fieldmeasurements,andcomputationalrockphysics.Inthispaper,wedemonstratetheimpactandvalidationofseveralofthesefactors.

CarbonateRockPhysicsModel

Wepreferananalyticalrockphysicsmodelratherthanempiricalonesduetoboththepredictivepowerthatitprovideswithouthavingtoacquiresomuchanalogdataanditsphysics-basednature.Empiricalrockphysicsmodelsarewidelyusedduetotheirsimplicityinfittingarelationshipbetweenparameters.Theadvantageofananalyticalmodelisthatoncetheparametersdescribingthephysicalcontrollingfactorsaredetermined,themodelcanbeappliedanywherethatthecontrollingparameterscanbeestimated.Thisachievesbetterpredictionsanddeeperunderstandingofthesubsurfacethanempiricalmodelswithlessdata.Nonlinearphysics-basedinclusionmodels(e.g.,KusterandToksoz,1974)areattractivebecausetheyhandlevariousfactorsthatimpactseismicresponseinaninternallyconsistentmanner.

WehaveextendedtheXu-White(1995)modeltocarbonaterocks(XuandPayne,2009).Ourmethodconsistsoffoursteps:

(1)mix(e.g.,theReuss-Voigt-Hillaverage)themineralstocreateasolidmatrix;

(2)addporestothematrixintwostepsusingtheDifferentialEffectiveMedium(DEM)process(XuandWhite,1996)andKuster-Toksoz(1974)theorytoaccountforthemechanicalinteractionbetweenthepores;themicro-poreswithboundwater(e.g.,claypores)areaddedfirstandwillbeincludedinthesolidmaterialforfluidsubstitution,followedbyallotherporesincludingwater-wetmicro-poresandempty(ordry)non-bound-waterpores,whichwillusedtocalculatethedryframeelasticproperties;(3)mixthewaterwhichisnotboundtomicro-poreswiththehydrocarbonsusinganappropriatefluidmixinglaw;and(4)useGassmann’sequationstoaddthefluidmixtureintotheporesystemtoyieldthefinaleffectiveelasticpropertiesforthesaturatedrock.Theexistingmodelispartitionedintoclay-relatedpores,interparticlepores,microcracks,andstiffpores.Wekeepclayporesinthemodeltomakeitapplicableinamixedcarbonate-clasticenvironment.Theintroductionofmicrocracksandstiffporesmakesiteasytostudythepore-typeeffectonseismicresponseincarbonaterocks.

PhysicalEffects

Itiscriticaltoproperlyaccountforphysicaleffectsintherockphysicsmodeltogeneratetheproperseismicresponse.Thisisparticularlytruesinceweusetherockphysicsmodeltoinvertgeophysicalmeasurementsforsubsurfacepropertiessuchasporosity,permeability,lithology,poretype,stressstate,andothersthatdescribehydrocarbonvolumesandproductionrates.Sinceproducibilityinheterogeneouscarbonatesettingsisverydependentontheporetype,itisimportanttohavemethodstopredicttheporetypefrominversions.Cross-plotsofvelocityversusdensityoftendemonstratesignificantscatter.However,ifonesegmentstheplotintothedifferentporetypes(Figure1),thenthescatterforeachpopulationissignificantlyreduced.Inaddition,eachpopulationcanbemodeledseparately.Ourcarbonaterockphysicsmodelrepresentseachporetypebyaspecificaspectratio(shortaxistolongaxis).FollowingKumarandHan(2005),weassumethattheinterparticleporeisthemostcommonporetypeincarbonaterocksand,therefore,givesareferenceporosity-velocitytrend(Figure2).Sampleswithhighervelocitiesthanthereferencetrendcanbemodeledasamixtureofinterparticleandrounded(stiff)pores.Thosewithslowervelocitiescanbemodeledasamixtureofmicrocracksandinterparticlepores.Wecandefineatemplateofcurvesfromouranalyticalrockphysicsmodelthatrepresentsporetype.Inthismanner,wecanpredicttheporetype(idealizedporeshape,e.g.,roundedorcrack-like)byinversion.

Duetothebrittlenatureofcarbonates,fracturesaregenerallyprevalentinthem.Fracturescreatesignificantanisotropy,asdemonstratedinfigure3.Seismicdatawereacquiredoverasurfacewithaprevalentfracturedirectionasindicated.Analysisofthesedatayielded19%anisotropyinadirectionconsistentwiththatofthefracturesystem.Thesefracturesystemsactasconduitsforfluidflowandcanconsiderablyenhancehydrocarbonproductioninlow-porositycarbonates.Althoughmappingthosefracturesystemsiscriticalforimprovingproduction,modelingtheeffectoffracturesontheseismicresponsecanbedifficult.WecaneasilyaccountforanisotropyusingDEMtheory(Xuetal.,2006)andtheanisotropicGassmannequationstodofluidsubstitution.Sinceourrockphysicsmodelhandlesanisotropyuptoorthorhombicsymmetry,itcansimulatebothfractureanisotropyandshaleanisotropyconsistently.XuandPayne(2009)describethefeaturesofthismodelasappliedtofractures.Itgenerallyreliesondistinguishingporetypes.Microcracksrepresentthemostcompliantcomponentinrocks,sotheyareextremelysensitivetostress.Thepreferredorientationdistributionwillgoverntheanisotropicbehavioroftherock.Otherporesaregenerallyinsensitivetostressandhavenopreferredorientation.

Whenvariationsoccuroverscaleslargerthanporesbutlessthanawavelength,differentmixinglawsneedtobeinvoked.Thesemeso-scaleeffectsareparticularlyimportantinheterogeneoussettingslikecarbonates.Figure4showslaboratorymeasurementsconductedbyPurdueUniversityundercontracttoExxonMobilthatdemonstratethesignificantchangesinvelocitythatcanoccuroververyshortdistances.Thecomplex,multi-scaleporesystemcreatesissuesastowhenGassmanntheorymaybeappliedincarbonatesandindicatesthatmeso-scaleeffectsmustbeincorporatedintorockphysicsmodels.

FluidSubstitutioninCarbonateRocks

GassmannfluidsubstitutionisapowerfultoolforAVOanalysisand4-Dinterpretation,butGassmann’stheoryrequiresmanyassumptions.Theseassumptionstendtobeviolatedmoreeasilyinrocksampleswithmulti-poretypes(XuandPayne,2009).Ourrockphysicsmodeltreatsthevariousporetypesdifferently.Fluidsareaddedseparatelyintothesystemwithinthedifferentporesusingtheinclusion-basedtheory.Gassmanfluidsubstitutionisonlyappliedinthoseporeswhereitisappropriatetodoso.ThisapplicationgeneratesthecorrectresponseinamixedsystemconsistingofGassmann-consistentmacroporesandnon-Gassmann-consistentmicrocrackswithunrelaxedporefluid.

Conclusions

Theoptimalproductionofreservoirsrequiresanaccurateandpreciseassessmentofthehydrocarbonvolumesandoftheratesatwhichthosereservoirscanbeproduced.Thisassessmentisparticularlyimportantincarbonates,whichtypicallyyieldonlyabout30%oftheiroilduetothecomplexityofthemineralogyandporesystems.Goodrockphysicsmodelscanallowgeophysiciststoconvertfromgeophysicalmeasurementstothedesiredengineeringandgeologicrockproperties.Severalexamplesareshowntodemonstratetheimpactthatporetypes,fluidsubstitution,scaling,anisotropy,andenvironmentaleffec

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1