开关电源中高频磁性组件设计常见错误概念辨析.docx

上传人:b****5 文档编号:29842915 上传时间:2023-07-27 格式:DOCX 页数:15 大小:89.92KB
下载 相关 举报
开关电源中高频磁性组件设计常见错误概念辨析.docx_第1页
第1页 / 共15页
开关电源中高频磁性组件设计常见错误概念辨析.docx_第2页
第2页 / 共15页
开关电源中高频磁性组件设计常见错误概念辨析.docx_第3页
第3页 / 共15页
开关电源中高频磁性组件设计常见错误概念辨析.docx_第4页
第4页 / 共15页
开关电源中高频磁性组件设计常见错误概念辨析.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

开关电源中高频磁性组件设计常见错误概念辨析.docx

《开关电源中高频磁性组件设计常见错误概念辨析.docx》由会员分享,可在线阅读,更多相关《开关电源中高频磁性组件设计常见错误概念辨析.docx(15页珍藏版)》请在冰豆网上搜索。

开关电源中高频磁性组件设计常见错误概念辨析.docx

开关电源中高频磁性组件设计常见错误概念辨析

开关电源中高频磁性组件设计常见错误概念辨析

很多电源工程师对开关电源中高频磁性组件的设计存在错误的概念,其设计出来的高频磁性组件不能满足应用场合的要求,影响了研发的进度和项目的按期完成。

基于开关电源及高频磁性组件设计经验,对一些概念性错误进行了辨析,希望能给大家提供借鉴,顺利完成高频磁性组件的设计以及整个项目的研制。

引言

开关电源中高频磁性组件的设计对于电路的正常工作和各项性能指针的实现非常关键。

加之高频磁性组件设计包括很多细节知识点,而这些细节内容很难被一本或几本所谓的“设计大全”一一罗列清楚[1-3]。

为了优化设计高频磁性组件,必须根据应用场合,综合考虑多个设计变量,反复计算调整。

正由于此,高频磁性组件设计一直是令初涉电源领域的设计人员头疼的难题,乃至是困扰有多年工作经验的电源工程师的问题。

很多文献及相关技术数据给出的磁性组件设计方法或公式往往直接忽略了某些设计变量的影响,作了假设简化后得出一套公式;或者并未交代清楚公式的应用条件,甚至有些文献所传达的信息本身就不正确。

很多电源设计者并没有意识到这一点,直接套用设计手册中的公式,或把设计手册中某些话断章取义,尊为“设计纲领”,而没有进行透彻的分析和思考,以及实验的验证。

其结果往往是设计出来的高频磁性组件不能满足应用场合的要求,影响了研发的进度和项目的按期完成。

为了使电源设计者在设计过程中,避免犯同样的错误,为此,我们针对在学习和研发中遇到的一些概念性的问题进行了总结,希望能给大家提供一个借鉴。

一些错误概念的辨析这里以小标题形式给出开关电源高频磁性组件设计中8种常见的错误概念,并加以详细的辨析。

1)填满磁芯窗口——优化的设计很多电源设计人员认为在高频磁性组件设计中,填满磁芯窗口可以获得最优设计,其实不然。

在多例高频变压器和电感的设计中,我们可以发现多增加一层或几层绕组,或采用更大线径的漆包线,不但不能获得优化的效果,反而会因为绕线中的邻近效应而增大绕组总损耗。

因此在高频磁性组件设计中,即使绕线没把铁芯窗口绕满,只绕满了窗口面积的25%,也没有关系。

不必非得想法设法填满整个窗口面积。

这种错误概念主要是受工频磁性组件设计的影响。

在工频变压器设计中,强调铁芯和绕组的整体性,因而不希望铁芯与绕组中间有间隙,一般都设计成绕组填满整个窗口,从而保证其机械稳定性。

但高频磁性组件设计并没有这个要求。

2)“铁损=铜损”——优化的变压器设计很多电源设计者,甚至在很多磁性组件设计参考书中都把“铁损=铜损”列为高频变压器优化设计的标准之一,其实不然。

在高频变压器的设计中,铁损和铜损可以相差较大,有时两者差别甚至可以达到一个数量级之大,但这并不代表该高频变压器设计不好[4]。

这种错误概念也是受工频变压器设计的影响。

工频变压器往往因为绕组匝数较多,所占面积较大,因而从热稳定、热均匀角度出发,得出“铁损=铜损”这一经验设计规则。

但对于高频变压器,采用非常细的漆包线作为绕组,这一经验法则并不成立。

在开关电源高频变压器设计中,确定优化设计有很多因素,而“铁损=铜损”其实是最少受关注的一个方面。

3)漏感=1%的磁化电感很多电源设计者在设计好磁性组件后,把相关的技术要求提交给变压器制作厂家时,往往要对漏感大小要求进行说明。

在很多技术单上,标注着“漏感=1%的磁化电感”或“漏感<2%的磁化电感”等类似的技术要求。

其实这种写法或设计标准很不专业。

电源设计者应当根据电路正常工作要求,对所能接受的漏感值作一个数值限制。

在制作变压器的过程中,应在不使变压器的其它参数(如匝间电容等)变差的情况下尽可能地减小漏感值,而非给出漏感与磁化电感的比例关系作为技术要求。

因为漏感与磁化电感的关系随变压器有无气隙变化很大。

无气隙时,漏感可能小于磁化电感的0.1%,而在有气隙时,即使变压器绕组耦合得很紧密,漏感与磁化电感的比例关系却可能达到10%[5]。

因此,不要把漏感与磁化电感的比例关系作为变压器设计指针提供给磁性组件生产商。

否则,这将表明你不理解漏感知识或并不真正关心实际的漏感值。

正确的做法是规定清楚可以接受的漏感绝对数值,当然可以加上或减去一定的比例,这个比例的典型值为20%。

4)漏感与磁芯磁导率有关系有些电源设计者认为,给绕组加上磁芯,会使绕组耦合更紧密,可降低绕组间的漏感;也有些电源设计者认为,绕组加上磁芯后,磁芯会与绕组间的场相互耦合,可增加漏感量。

而事实是,在开关电源设计中,两个同轴绕组变压器的漏感与有无磁芯存在并无关系。

这一结果可能令人无法理解,这是因为,一种相对磁导率为几千的材料靠近线圈后,对漏感的影响很小。

通过几百组变压器的实测结果表明,有无磁芯存在,漏感变化值基本上不会超过10%,很多变化只有2%左右。

5)变压器绕组电流密度的优化值为2A/mm2~3.1A/mm2很多电源设计者在设计高频磁性组件时,往往把绕组中的电流密度大小视为优化设计的标准。

其实优化设计与绕组电流密度大小并没有关系。

真正有关系的是绕组中有多少损耗,以及散热措施是否足够保证温升在允许的范围之内。

我们可以设想一下开关电源中散热措施的两种极限情况。

当散热分别采用液浸和真空时,绕线中相应的电流密度会相差较大。

在开关电源的实际研制中,我们并不关心电流密度是多大,而关心的只是线包有多热?

温升是否可以接受?

这种错误概念,是设计人员为了避免繁琐的反复试算,而人为所加的限制,来简化变量数,从而简化计算过程,但这一简化并未说明应用条件。

6)原边绕组损耗=副边绕组损耗”——优化的变压器设计很多电源设计者认为优化的变压器设计对应着变压器的原边绕组损耗与副边绕组损耗相等。

甚至在很多磁性组件的设计书中也把此作为一个优化设计的标准。

其实这并非什么优化设计的标准。

在某些情况下变压器的铁损和铜损可能相近。

但如果原边绕组损耗与副边绕组损耗相差较大也没有多大关系。

必须再次强调的是,对于高频磁性组件设计我们所关心的是在所使用的散热方式下,绕组有多热?

原边绕组损耗=副边绕组损耗只是工频变压器设计的一种经验规则。

7)绕组直径小于穿透深度——高频损耗就会很小绕组直径小于穿透深度并不能代表就没有很大的高频损耗。

如果变压器绕组中有很多层,即使绕线采用线径比穿透深度细得多的漆包线,也可能会因为有很强的邻近效应而产生很大的高频损耗。

因此在考虑绕组损耗时,不能仅仅从漆包线的粗细来判断损耗大小,要综合考虑整个绕组结构的安排,包括绕组绕制方式、绕组层数、绕线粗细等。

8)正激式电路中变压器的开路谐振频率必须比开关频率高得多很多电源设计人员在设计和检测变压器时认为变压器的开路谐振频率必须比变换器的开关频率高得多。

其实不然,变压器的开路谐振频率与开关频率的大小并无关系。

我们可以设想一下极限情况:

对于理想磁芯,其电感量无穷大,但也会有一个相对很小的匝间电容,其谐振频率近似为零,比开关频率小得多。

真正与电路有关系的是变压器的短路谐振频率。

一般情况下,变压器的短路谐振频率都应当在开关频率的两个数量级以上。

结语

变压器知识:

如何减少变压器对放大器的干扰

为了使电源设计者在电源设计过程中,少犯同样的错误,就我们在开关电源的研发中遇到的一些与高频磁性组件设计相关的概念性问题进行了总结,希望能起到抛砖引玉的作用。

电源变压器可通过磁场、电磁感应和电路对放大器形成干扰,是音响机器中最大的干扰源。

所以,要处理好它的工作状态和应用环境,才能有效地避免由电源变压器产生的干扰,使放大器得到优良的音效。

下面我将对此与大家做一讨论。

1、电源变压器除了为放大器供电外,还能够将放大器与电源偶合起来,使电网中的干扰源进入放大器,同时也将放大器产生的电压、电流变化反射到电网中。

为了切断绕组间的静电场及容性偶合,隔离和共模抑制由此产生的干扰,避免将电网或电路中的共模电压偶合到次级或初级中去,对音响用电源变压器的绕组加法拉第静电屏蔽是很关键的。

这种屏蔽可以是层间交替的铜箔,也可以是完整的合状结构,总之对绕组(尤其是对初级的绕组)包围得越多,共模抑制越好。

2、由电源变压器产生的磁场干扰一直是困扰放大器质量提高的问题,即使有纯净的电源,来自它的磁场感应也能造成放大器质量严重下降。

由于磁屏蔽隔离罩价格高昂(甚至高过了变压器本身,这也是一些进口变压器价格居高的原因),一般的国产机器很少使用磁屏蔽隔离罩切断变压器的磁干扰,许多只是采用简单的铁皮罩隔离,甚至干脆将变压器裸露安装,所以就不能进行有效的磁屏蔽。

国外优质的变压器常采用多层锰游合金和粗铜层相间的结构,把变压器包围起来,一方面利用锰游合金高电阻、高磁导的特性进行磁短路,另一方面通过铜层内引起的涡流产生一个与干扰磁场相反的磁场抵消磁干扰,因此极大的降低了变压器的磁场外泄。

业余条件下是很难得到锰游合金罩的,但也可用1.5毫米的软铁板和铜板制成多层结构的磁屏蔽罩。

3、当变压器初级阻抗等于源电阻同负载的反射电阻的并联值时,将出现低频截止,增大源于变压器的噪声,所以电源变压器也必须有足够的电感。

但这并不能成为盲目加大变压器输出功率的理由。

因为,变压器初级电感是随铁芯磁通密度而变化的,次级负载功率小时,铁芯磁通密度也会减小,使电感下降。

一般,电源变压器的功率可在次级供电功率的1.4—2倍之间选择,比较适当。

4、优质变压器的铁芯导磁率很高,磁致伸缩效应也很高,对外界磁场、压力、振动的影响敏感,能够因此而产生附加电压,造成干扰。

为此,在装配或安装变压器时。

要采取以下措施:

—铁芯或屏蔽装配前须退磁处理。

—避免铁芯短路,产生涡流,降低磁通,使电感下降。

—变压器应真空浸渍,使叠片不能互相移动。

—变压器要安装在减震基座上,任何磁场源也要减震安装。

—如果安装空间允许,对变压器应当进行声学隔离。

5、变压器的形式对减少干扰也很重要。

一般,环型或O型的变压器效率高,漏磁小,但磁通容易饱和,反而不利于抵抗电网的干扰。

EI型的则相反,并且因为存在一定的气隙,能使铁芯的导磁率稳定。

R型的则介于此两者之间。

由于,我国电网污染较严重,故许多“发烧友”更多地选择了EI型变压器作为音响电源。

变压器小结:

变压器中的分布电容与屏蔽

实际电路都是由非理想元件组成的,在设计中可能会遇到许多预料不到的情况。

在调试如图1所示的普通全桥电源时,输出不是料想中平稳的波形,而是不时发生间歇振荡,并发出“吱吱”声,有时甚至会烧毁开关管。

对电路进行分析后未发现结构上可能导致不稳定的因素,于是改变输出采样的电压比,将输出调定在半电压24V上,使用90V的输入直流电压,在保证功率管安全的情况下进行调试。

待电路工作正常后,再缓慢升高输入直流电压,经过多次试验,发现当Ui为180~250V时就可能引发振荡,最后判定是驱动变压器各个绕组之间的分布电容在捣乱。

两只开关管的电容分布如图2所示,其中C2是绕组NA的下端M与NB的上端P间的分布电容。

当驱动变压器的绕组NA输出正脉冲时NB输出负脉冲,TA管由截止转为饱和导通,于是TA管的源极即M点的电位急速升高,并通过电容C2提升NB绕组上端P的电位,升高的数值与两个绕组的分布电容C1、C2、C3有关,还和P点到地的高频阻抗以及M点电位上升的速度有关。

如果提升的数值大于NB绕组自身的负脉冲幅度,就会引发TB管的瞬时导通,从而出现前面所述的间歇振荡。

其他各管导通时也会有类似情况发生。

解决电磁干扰一般有三种途径,一是降低干扰源的强度,二是增强被驱动的MOS管的抗干扰能力,三是阻隔干扰的通路。

在本例中,干扰源就是变压器要传递的脉冲,这是无法降低的。

给驱动加上负压,可以大大增强MOS管的抗干扰能力,这种方法为许多电源所采用。

本例采用第三种方法,即在驱动变压器的各绕组间加绕屏蔽层,其结构如图3所示,共5个绕组和5个屏蔽层。

整个变压器包括屏蔽层从左向右逐层绕制,N1接到控制回路的地;两个下管驱动绕组由于电位变化不大,同时与N2连接,实际上是接到了功率地;N3和N4将上管绕组NA包了起来,并与NA的异名端相接;N5将绕组ND与NA隔离。

这样每个绕组都和它的屏蔽层同电位,它们之间不会有容性电流。

当上管TA导通、上管绕组NA的电位跳升时,屏蔽层N3和N4的电位也要同样跳变,由于N2和N3之间的分布电容,这个跳变将在这两个屏蔽层中间产生电流,但对管子的驱动没有影响,只是会耗损一点主功率。

在实际电路中采用了加电磁屏蔽的驱动变压器之后,问题得到了全部解决。

 

需要特别提出的是,屏蔽的作用是将各个绕组隔离开,以避免分布电容的不良影响。

因此屏蔽层接到什么地方,是需要慎重考虑的,否则可能适得其反。

如果图3中的N3、N4不与NA相接,而是与N2一起接到功率地,则电容分布如图4所示,C6、C7分别表示绕组NA的上下端与屏蔽层N3间,也就是功率地间的分布电容(实际上C6、C7分别是包含了图2中C4、C1后的等效电容)。

当NA输出正脉冲的上升沿时,TA迅速导通,M点电位跳升,于是C6、C7中要有容性电流产生。

M是低阻抗点,电流iC7对它的电位影响不大,但N点却是高阻抗点,iC6电流将瞬间降低它的电位,可能使TA管瞬间关断。

因此不能采用这种连接方式。

屏蔽层N3、N4如改与NA的同名端相接,效果也不好。

对于分布电容引起的截止管误导通,可以采取设置负压驱动和屏蔽隔离两种办法来解决。

给变压器增加屏蔽层会使驱动变压器的设计变得复杂,但不用对电路进行修改,仍不失为一种实用有效的方法。

浅议开关电源变压器的检测方法

1、通过观察变压器的外貌来检查其是否有明显异常现象。

如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。

2、绝缘性测试。

用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。

否则,说明变压器绝缘性能不良。

  

    3、线圈通断的检测。

将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。

  

    4、判别初、次级线圈。

电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。

再根据这些标记进行识别。

  

    5、空载电流的检测。

  

    a、直接测量法。

将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。

当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。

此值不应大于变压器满载电流的10%~20%。

一般常见电子设备电源变压器的正常空载电流应在100mA左右。

如果超出太多,则说明变压器有短路性故障。

    b、间接测量法。

在变压器的初级绕组中串联一个10?

/5W的电阻,次级仍全部空载。

把万用表拨至交流电压挡。

加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。

F?

空载电压的检测。

将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:

高压绕组≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。

  

    6、一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质量较好,允许温升还可提高。

  

    7、检测判别各绕组的同名端。

在使用电源变压器时,有时为了得到所需的次级电压,可将两个或多个次级绕组串联起来使用。

采用串联法使用电源变压器时,参加串联的各绕组的同名端必须正确连接,不能搞错。

否则,变压器不能正常工作。

  

    8、电源变压器短路性故障的综合检测判别。

电源变压器发生短路性故障后的主要症状是发热严重和次级绕组输出电压失常。

通常,线圈内部匝间短路点越多,短路电流就越大,而变压器发热就越严重。

检测判断电源变压器是否有短路性故障的简单方法是测量空载电流(测试方法前面已经介绍)。

存在短路故障的变压器,其空载电流值将远大于满载电流的10%。

当短路严重时,变压器在空载加电后几十秒钟之内便会迅速发热,用手触摸铁心会有烫手的感觉。

此时不用测量空载电流便可断定变压器有短路点存在。

单激式开关电源变压器的伏秒容量与初级线圈匝数的计算

单激式开关电源变压器的伏秒容量与初级线圈匝数的计算

在图2-1中,当有直流脉冲电压输入变压器初级线圈a、b两端时,在变压器初级线圈中就有励磁电流流过,励磁电流会在变压器铁芯中产生磁通Φ,同时在变压器初级线圈两端还会产生反电动势;反电动势电压的幅度与输入电压的幅度相等,但方向相反。

因此,根据电磁感应定律,变压器铁芯中磁通Φ的变化过程由下式决定:

图2-1单激式变压器开关电源等效电路

上面(2-13)、(2-14)、(2-15)式中,US为变压器的伏秒容量,US=E×τ,即:

伏秒容量等于输入脉冲电压幅度与脉冲宽度的乘积,单位为伏秒,E为输入脉冲电压的幅度,单位为伏,τ为脉冲宽度,单位为秒;ΔΦ为磁通增量,单位为麦克斯韦(Mx),ΔΦ=S×ΔB;ΔB磁通密度增量,ΔB=Bm-Br,单位为高斯(Gs);S为铁芯的截面积,单位为平方厘米;N1为变压器初级线圈N1绕组的匝数,K为比例常数。

伏秒容量表示一个变压器能够承受多高的输入电压和多长时间的冲击。

因此,变压器的伏秒容量US越大,表示流过变压器初级线圈的励磁电流就越小。

一般变压器的励磁电流都是不提供功率输出的,只有反激式开关电源是例外,因此,在正激式变压器开关电源或双激式变压器开关电源中,励磁电流越小,表示开关电源的工作效率越高。

在一定的变压器伏秒容量条件下,输入电压越高,变压器能够承受冲击的时间就越短,反之,输入电压越低,变压器能够承受冲击的时间就越长;而在一定的工作电压条件下,变压器的伏秒容量越大,变压器的铁芯中的磁通密度就越低,变压器铁芯就更不容易饱和。

变压器的伏秒容量与变压器的体积以及功率基本无关,只与磁通的变化量大小有关。

如果我们对(2-15)式稍微进行变换,就可以得到单激式开关电源变压器初级线圈匝数计算公式:

(2-16)式就是计算单激式开关电源变压器初级线圈N1绕组匝数的公式。

式中,N1为变压器初级线圈N1绕组的最少匝数,S为变压器铁芯的导磁面积(单位:

平方厘米),Bm为变压器铁芯的最大磁通密度(单位:

高斯),Br为变压器铁芯的剩余磁通密度(单位:

高斯),τ为脉冲宽度,或电源开关管导通时间的宽度(单位:

秒),E为脉冲电压幅度,即开关电源的工作电压幅度,单位为伏。

(2-16)式中的指数108在数值上正好等于(2-13)、(2-14)、(2-15)式中的比例系数K,因此,选用不同单位制,比例系数K的值就会不一样;这里选用CGS单位制,即:

长度为厘米(cm),磁通密度为高斯(Gs),磁通单位为麦克斯韦(Mx)。

从图2-2和图2-3还可以看出,直接采用图2-2和图2-3的参数来设计单激式开关电源变压器,在实际应用中是没有太大价值的。

因为,普通变压器铁芯材料的最大磁通密度Bm的值都不大,大约在3000~5000高斯之间,剩余磁通密度Br一般却高达最大磁通密度Bm的80%以上,因此,实际可应用的磁通密度增量ΔB一般都很小,大约只有500高斯左右,一般不会超过1000高斯。

为了增大磁通密度增量ΔB,一般都需要在变压器铁芯中留出一定长度的气隙,以降低剩余磁通密度Br的数值。

由(2-13)和(2-14)式可以知道,尽管磁化曲线不是线性的,但当输入电压为方波时,流过变压器初级线圈励磁电流所产生的磁通还是按线性规律增长的;而流过变压器初级线圈励磁电流以及磁场强度却不一定是按线性规律增长,正因为如此,才使得(2-13)和(2-14)式中出现一个比例常数K。

也就是说,当我们把(2-13)、(2-14)、(2-15)式中的系数K作为一个比例常数看待时,同时也就意味着,我们已经把变压器铁芯的导磁率也当成了一个常数看待了,但由于变压器铁芯导磁率的非线性以及励磁电流的非线性,两个非线性参数互相补偿,才使得变压器铁芯中的磁通按线性规律变化。

因此,在变压器铁芯将要接近饱和的时候,变压器初级线圈中的励磁电流是非常大的。

在单激变压器开关电源中,虽然流过变压器初级线圈中的电流所产生的磁通是按线性规律上升的,但变压器铁芯产生退磁时,磁通的变化并不一定是按线性规律下降的。

这个问题在第一章的内容中已经基本作了解释。

当直流脉冲电压过后,变压器次级线圈中产生的是反激式电压输出,在纯电阻负载中,其输出电压一般是一个按指数规律下降的电压脉冲,因此,其对应的磁通增量就不可能是按线性规律变化,而应该也是按指数规律变化的,不过后一种指数规律正好是对前一种指数规律进行积分的结果。

这种对应关系从(2-13)和(2-14)式中也很容易可以看得出来。

这里顺便指出:

单激式变压器开关电源中,对变压器铁芯产生磁化作用的只有流过变压器初级线圈的励磁电流,因此,励磁电流也称磁化电流;而对变压器铁芯产生退磁作用的是变压器初、次级线圈产生的反电动势,以及由反电动势产生的电流,即:

反激输出电压和电流;而正激输出电压和电流对变压器铁芯的磁化和退磁不起作用。

因为,励磁电流虽然会产生正激电压,但不能提供正激电流输出,这相当于变压器次级线圈处于开路时的情况一样;当变压器次级线圈有正激电流输出时,在变压器初级线圈中也相应要增加一个电流,这个电流是在原励磁电流的基础上相应增加的;这个新增电流产生的磁通与正激输出电流产生的磁通,在数值上完全相等,但方向相反,两者互相抵消,即它们对磁化和退磁都不起作用。

——关于正、反激输出电压的概念,以及变压器伏秒容量的概念,请参考第一章《1-5-1.单激式变压器开关电源的工作原理》和《1-6-3-2-1.正激式开关电源变压器初级线圈匝数的计算》等部分的内容。

开关变压器的有效导磁率

前面已经指出过,用来代表介质属性的导磁率并不是一个常数,而是一个非线性函数,它不但与介质以及磁场强度有关,而且与温度还有关。

因此,导磁率所定义的并不是一个简单的系数,而是人们正在利用它来掩盖住人类至今还没有完全揭示的,磁场强度与电磁感应强度之间的内在关系。

前面我们比较详细地介绍了平均导磁率μa和脉冲导磁率μ△的概念,以后我们还会碰到初始导磁率μi、最大导磁率μm、相对导磁率μr(铁磁材料导磁率与真空导磁率之比,μr=μ/μ0)和有效导磁率μe等概念,这些,都是人们在不同的使用场合,对铁磁材料的导磁率进行不同的定义,以使分析计算简单。

初始导磁率μi和最大导磁率μm以及相对导磁率μe一般比较容易理解,这里不准备再对它们做详细介绍,下面重点介绍一下有效导磁率μe的概念。

很多人在测试变压器铁芯导磁率的时候,都是通过测试变压器线圈电感量的方法来测试变压器铁芯的导磁率;这种测试方法实际上就是测试电感线圈的交流阻抗,然后把阻抗换算成线圈的电感量,最后再根据(2-67)式求出变压器铁芯的导磁率。

L=μ*N*N*S/l(2-67)

但实际上用上述方法测试出来的导磁率,既不是平均导磁率μa或脉冲导磁率μ△;而是有效导磁率μe,因为,在测试电感线圈的交流阻抗的时候,无法把铁芯涡流产生的电阻与线圈电感的阻抗互相分开。

有效导磁率μe的概念是变压器铁芯的磁感应强度增量与变压器铁芯表面最大磁场强度之比,即:

(2-92)式中,μe为变压器铁芯的有效导磁率;∆B为磁感应强度增量;Hm(τ)为变压器铁芯表面的最大磁场强度;N为电感线圈匝数;l变压器铁芯的平均磁回路长度;Iem为涡流损耗折算到变压器线圈中的电流与最大励磁电流之和,Iem=i(τ),即:

涡流损耗折算到变压器线圈中的电流励磁电流之和ie在t=τ时刻的电流值;μa为变压器铁芯的平均导磁率。

这里必须指明:

变压器铁芯表面的最大磁场强度Hm(τ)是指在t=τ时刻,图2-19-a中,x=δ/2处,或图2-22-a

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1