高频电子线路实验指导书.docx
《高频电子线路实验指导书.docx》由会员分享,可在线阅读,更多相关《高频电子线路实验指导书.docx(64页珍藏版)》请在冰豆网上搜索。
高频电子线路实验指导书
TPE-GP3型高频电路实验学习机
实验指导书
清华大学科教仪器厂
2004年12月
前言
实验是学习电子技术的一个重要环节。
对巩固和加深课堂教学内容,提高学生实际工作技能,培养科学作风,为学习后续课程和从事实践技术工作奠定基础具有重要作用。
为适应电子科学技术的迅猛发展和教学改革不断深入的需要,我们在教学实践的基础上,运用多年从事教学仪器产品研制生产的经验,研制生产了TPE—GP型高频电路实验学习机,并编写了这本相应的实验指导书。
本书包括了《高频电路》课程主要实验内容。
不同层次不同需要的学校可根据本专业教学要求选择。
也可自行开发实验内容。
本指导书中所有实验均可在TPE—GP型高频电路实验学习机上完成。
自行开发部分的实验须在面包板上完成,并需另备元器件。
由于编者水平所限,时间仓促,错误及欠缺之处恳请批评指正。
编者
1998年6月于清华大学
实验要求
1.实验前必须充分预习,完成指定的预习任务。
预习要求如下:
1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进
行必要的估算。
2)完成各实验“预习要求”中指定的内容。
3)熟悉实验任务。
4)复习实验中所用各仪器的使用方法及注意事项。
2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在
使用时应严格遵守。
3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初
学或没有把握应经指导教师审查同意后再接通电源。
4.高频电路实验注意:
1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。
2)由于高频电路频率较高,分布参数及相互感应的影响较大。
所以在接线时连接线要尽可能短。
接地点必须接触良好。
以减少干扰。
3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。
5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、
发烫或有异味)应立即关断电源,保持现场,报告指导教师。
找
出原因、排除故障,经指导教师同意再继续实验。
6.实验过程中需要改接线时,应关断电源后才能拆、接线。
7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、
现象)。
所记录的实验结果经指导教师审阅签字后再拆除实验线
路。
8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、
工具、导线等按规定整理
9.实验后每个同学必须按要求独立完成实验报告
实验一调谐放大器(实验板1)……………………………………………1
1.单调谐回路谐振放大器
2.双调谐回路谐振放大器
实验二丙类高频功率放大器(实验板2)……………………………5
实验三LC电容反馈式三点式振荡器(实验板1)………………………7
实验四石英晶体振荡器(实验板1)……………………………………10
实验五振幅调制器(实验板3)……………………………………………12
实验六调幅波信号的解调(实验板3)……………………………………15
实验七变容二极管调频振荡器(实验板4)…………………………………18
实验八相位鉴频器(实验板4)……………………………………………20
实验九集成电路(压控振荡器)构成的频率调制器(实验板5)…………23
实验十集成电路(锁相环)构成的频率解调器(实验板5)………………26
实验十一利用二极管函数电路实现波形转换(主机面板)………………28
实验十二晶体管混频电路(实验板6)……………………………………29
实验十三集成乘法器混频实验(高频电路实验箱)………………………32
实验十四数字信号发生实验(高频电路实验箱)…………………………6
实验十五锁相调频与鉴频实验(高频电路实验箱)………………………9
实验十六数字调频与解调实验(高频电路实验箱)………………………16
实验十七锁相式数字频率合成器实验(高频电路实验箱)………………20
实验一调谐放大器
一、实验目的
1.熟悉电子元器件和高频电路实验箱。
2.熟悉谐振回路的幅频特性分析--通频带与选择性。
3.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。
4.熟悉和了解放大器的动态范围及其测试方法。
二、实验仪器设备
1.双踪示波器
2.扫频仪
3.高频信号发生器
4.毫伏表
5.万用表
6.实验板G1
三、预习要求
1.复习谐振回路的工作原理。
2.了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。
3.实验电路中,若电感量L=1μh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率f。
。
四、实验内容及步骤
(一)单调谐回路谐振放大器。
图1-1单调谐回路谐振放大器原理图
1.实验电路见图1-1
(1).按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。
(2).接线后仔细检查,确认无误后接通电源。
2.静态测量
实验电路中选Re=1K
测量各静态工作点,计算并填表1.1
表1.1
实测
实测计算
根据VCE
判断V是否工作在放大区
原因
VB
VE
IC
VCE
是
否
*VB,VE是三极管的基极和发射极对地电压。
3.动态研究
(1).测放大器的动态范围Vi~V0(在谐振点)
选R=10K,Re=1K。
把高频信号发生器接到电路输入端,电路输出端接毫伏表,选择正常放大区的输入电压Vi,调节频率f使其为10.7MHz,调节CT使回路谐振,使输出电压幅度为最大。
此时调节Vi由0.02伏变到0.8伏,逐点记录V0电压,并填入表1.2。
Vi的各点测量值可根据(各自)实测情况来确定。
表1.2
Vi(V)
0.02
0.04
0.1
0.15
0.2
0.3
0.4
0.5
0.6
0.7
0.8
V0(V)
Re=1k
Re=500Ω
Re=2K
(2).当Re分别为500Ω、2K时,重复上述过程,将结果填入表1.2。
在同一坐标纸上画出IC不同时的动态范围曲线,并进行比较和分析。
(3).用扫频仪调回路谐振曲线。
仍选R=10K,Re=1K。
将扫频仪射频输出送入电路输入端,电路输出接至扫频仪检波器输入端。
观察回路谐振曲线(扫频仪输出衰减档位应根据实际情况来选择适当位置),调回路电容CT,使f0=10.7MHz。
(4).测量放大器的频率特性
当回路电阻R=10K时,选择正常放大区的输入电压Vi,将高频信号发生器输出端接至电路输入端,调节频率f使其为10.7MHz,调节CT使回路谐振,使输出电压幅度为最大,此时的回路谐振频率f0=10.7MHz为中心频率,然后保持输入电压Vi不变,改变频率f由中心频率向两边逐点偏离,测得在不同频率f时对应的输出电压V0,将测得的数据填入表1.3。
频率偏离范围可根据(各自)实测情况来确定。
表1.3
f(MHz)
8.5
9.0
9.5
10.0
10.7
11.0
11.5
12.0
13.0
V0
R=10KΩ
R=2KΩ
R=470Ω
计算f0=10.7MHz时的电压放大倍数及回路的通频带和Q值。
(5).改变谐振回路电阻,即R分别为2KΩ,470Ω时,重复上述测试,并填入表1.3。
比较通频带情况。
五、实验报告要求
1.写明实验目的。
2.画出实验电路的直流和交流等效电路,计算直流工作点,与实验实测结果比较。
3.写明实验所用仪器、设备及名称、型号。
4.整理实验数据,并画出幅频特性。
单调谐回路接不同回路电阻时的幅频特性和通频带,整理并分析原因。
5.本放大器的动态范围是多少(放大倍数下降1dB的折弯点V0定义为放大器动态范围),讨论IC对动态范围的影响。
实验二高频功率放大器(丙类)
一、实验目的
1.了解丙类功率放大器的基本工作原理,掌握丙类放大器的计算与设计方法。
2.了解电源电压VC与集电极负载对功率放大器功率和效率的影响。
二、预习要求
1.复习功率谐振放大器原理及特点。
2.分析图2-1所示的实验电路,说明各元器件作用。
三、实验仪器设备
1.双踪示波器
2.扫频仪
3.高频信号发生器
4.万用表
5.实验板G2
四、实验内容及步骤
1.实验电路见图2-1
按图接好实验板所需电源,将A、B两点短接,利用扫频仪调回路谐振频率,使其谐振在6.5MHz的频率上。
图2-1功率放大器(丙类)原理图
2.加负载51Ω,测I0电流。
在输入端接f=6.5MHz、Vi=120mV信号,测量各工作电压,同时用示波器测量输入、输出峰值电压,将测量值填入表2.1内。
表2.1
f=6.5MHz
实测
实测计算
VB
VE
VCE
Vi
V0
I0
IC
Pi
P0
Pa
η
VC=12V
Vi=120mV
RL=50Ω
RL=75Ω
RL=120Ω
Vi=84mV
RL=50Ω
RL=75Ω
RL=120Ω
VC=5V
Vi=120mV
RL=50Ω
RL=75Ω
RL=120Ω
Vi=84mV
RL=50Ω
RL=75Ω
RL=120Ω
其中:
Vi:
输入电压峰-峰值
V0:
输出电压峰-峰值
I0:
电源给出总电流
Pi:
电源给出总功率(Pi=VCI0)(VC:
为电源电压)
P0:
输出功率
Pa:
为管子损耗功率(Pa=Pi-P0)
3.加75Ω负载电阻,同2测试并填入表2.1内。
4.加120Ω负载电阻,同2测试并填入表2.1内。
5.改变输入端电压Vi=84mV,同2、3、4测试并填入表2.1测量。
6.改变电源电压VC=5V,同2、3、4、5测试并填入表2.1内。
五、实验报告要求
1.根据实验测量结果,计算各种情况下IC、P0、Pi、η。
1.说明电源电压、输出电压、输出功率的相互关系。
2.总结在功率放大器中对功率放大晶体管有哪些要求。
实验三LC电容反馈式三点式振荡器
一、实验目的
1.掌握LC三点式振荡电路的基本原理,掌握LC电容反馈式三点振荡电路设计及电参数计算。
2.掌握振荡回路Q值对频率稳定度的影响。
3.掌握振荡器反馈系数不同时,静态工作电流IEQ对振荡器起振及振幅的影响。
二、预习要求
1.复习LC振荡器的工作原理。
2.分析图3-1电路的工作原理,及各元件的作用,并计算晶体管静态工作电流IC的最大值(设晶体管的β值为50)。
3.实验电路中,L1=10μh,若C=120pf,C’=680pf,计算当CT=50pf和CT=150pf时振荡频率各为多少?
三、实验仪器设备
1.双踪示波器
2.频率计
3.万用表
4.实验板G1
四、实验内容及步骤
实验电路见图3-1。
实验前根据图3-1所示
原理图在实验板上找到相应器件及插孔并了解
其作用。
图3-1LC电容反馈式三点式振荡器原理图
1.检查静态工作点
(1).在实验板+12V扦孔上接入+12V直流电源,注意电源极性不能接反。
(2).反馈电容C不接,C’接入(C’=680pf),用示波器观察振荡器停振时的情况。
注意:
连接C’的接线要尽量短。
(3).改变电位器RP测得晶体管V的发射极电压VE,VE可连续变化,记下VE的最大值,计算IE值
设:
Re=1KΩ
4.振荡频率与振荡幅度的测试
实验条件:
Ie=2mA、C=120pf、C’=680pf、RL=110K
(1).改变CT电容,当分别接为C9、C10、C11时,纪录相应的频率值,并填入表3.1。
(2).改变CT电容,当分别接为C9、C10、C11时,用示波器测量相应振荡电压的峰峰值VP-P,并填入表3.1。
表3.1
CT
f(MHz)
VP-P
51pf
100pf
150pf
3.测试当C、C’不同时,起振点、振幅与工作电流IER的关系(R=110KΩ)
(1).取C=C3=100pf、C’=C4=1200pf,调电位器RP使IEQ(静态值)分别为表3.2所标各值,用示波器测量输出振荡幅度VP-P(峰-峰值),并填入表3.2。
表3.2
IEQ(mA)
0.8
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VP-P(V)
(2).取C=C5=120pf、C’=C6=680pf,C=C7=680pf、C’=C8=120pf,分别重复测试表3.2的内容。
4.频率稳定度的影响
(1).回路LC参数固定时,改变并联在L上的电阻使等效Q值变化时,对振荡频率的影响。
实验条件:
f=6.5MHz时,C/C’=100/1200pf、IEQ=3mA改变L的并联电阻R,使其分别为1KΩ、10KΩ、110KΩ,分别记录电路的振荡频率,并填入表3.3。
注意:
频率计后几位跳动变化的情况。
(2).回路LC参数及Q值不变,改变IEQ对频率的影响。
实验条件:
f=6.5MHz、C/C’=100/1200pf、R=110KΩ、IEQ=3mA,改变晶体管IEQ使其分别为表3.2所标各值,测出振荡频率,并填入表3.4。
Q~f表3.3IEQ~f表3.4
R
1KΩ
10KΩ
11OKΩ
IEQ(mA)
1
2
3
4
f(MHz)
F(MHz)
五、实验报告要求
1.写明实验目的。
2.写明实验所用仪器设备。
3.画出实验电路的直流与交流等效电路,整理实验数据,分析实验结果。
4.以IEQ为横轴,输出电压峰峰值VP-P为纵轴,将不同C/C′值下测得的三组数据,在同一座标纸上绘制成曲线。
5.说明本振荡电路有什么特点。
实验四石英晶体振荡器
一、实验目的
1.了解晶体振荡器的工作原理及特点。
2.掌握晶体振荡器的设计方法及参数计算方法。
二、预习要求
1.查阅晶体振荡器的有关资料。
阐明为什么用石英晶体作为振荡回路元件就能使振荡器的频率稳定度大大提高。
2.试画出并联谐振型晶体振荡器和串联谐振型晶体振荡器的实际电路,并阐述两者在电路结构及应用方面的区别。
三、实验仪器设备
1.双踪示波器
2.频率计
3.万用表。
4.实验板G1
四、实验内容及步骤
图4-1晶体振荡器原理图
实验电路见图4-1
1.测振荡器静态工作点,调图中RP,测得IEmin及IEmax。
2.测量当工作点在上述范围时的振荡频率及输出电压。
3.负载不同时对频率的影响,RL分别取110KΩ,10KΩ,1KΩ,测出电路振荡频率,填入表4.1,并与LC振荡器比较。
RL~f表4.1
R
110KΩ
10KΩ
1KΩ
f(MHz)
五、实验报告要求
1.画出实验电路的交流等效电路。
2.整理实验数据。
3.比较晶体振荡器与LC振荡器带负载能力的差异,并分析原因。
4.你如何肯定电路工作在晶体的频率上。
5.根据电路给出的LC参数计算回路中心频率,阐述本电路的优点。
实验五振幅调制器(利用乘法器)
一、实验目的
1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系。
2.掌握测量调幅系数的方法。
3.通过实验中波形的变换,学会分析实验现象。
二、预习要求
1.预习幅度调制器有关知识。
2.认真阅读实验指示书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。
3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。
三、实验仪器设备
1.双踪示波器。
2.高频信号发生器。
3.万用表。
4.实验板G3。
四、实验电路说明
幅度调制就是载波的振幅受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号
为载波信号,低频信号为调制信号,调图5-11496芯片内部电路图
幅器即为产生调幅信号的装置。
本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V
5、V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
用1496集成电路构成的调幅器电路图如图5-2所示,图中RP1用来调节引出脚①、④之间的平衡,RP2用来调节⑧、⑩脚之间的平衡,三极管V为射极跟随器,以提高调幅器带负载的能力。
五、实验内容及步骤
实验电路见图5-2
图5-21496构成的调幅器
1.直流调制特性的测量
(1).调RP2电位器使载波输入端平衡:
在调制信号输入端IN2加峰值为100mv,频率为1KHz的正弦信号,调节Rp2电位器使输出端信号最小,然后去掉输入信号。
(2).在载波输入端IN1加峰值VC为10mv,频率为100KHz的正弦信号,用万用表测量A、B之间的电压VAB,用示波器观察OUT输出端的波形,以VAB=0.1V为步长,记录RP1由一端调至另一端的输出波形及其峰值电压,注意观察相位变化,根据公式VO=KVABVC(t)计算出系数K值。
并填入表5.1。
表5.1
VAB
VO(P-P)
K
2.实现全载波调幅
(1).调节RP1使VAB=0.1V,载波信号仍为VC(t)=10sin2π×105t(mV),将低频信号Vs(t)=VSsin2π×103t(mV)加至调制器输入端IN2,画出VS=30mV和100mV时的调幅波形(标明峰一峰值与谷一谷值)并测出其调制度m。
(2).加大示波器扫描速率,观察并记录m=100%和m>100%两种调幅波在零点附近的波形情况。
(3).载波信号VC(t)不变,将调制信号改为VS(t)=100sin2π×103t(mV)调节RP1观察输出波形VAM(t)的变化情况,记录m=30%和m=100%调幅波所对应的VAB值。
(4).载波信号VC(t)不变,将调制信号改为方波,幅值为100mV,观察记录VAB=0V、0.1V、0.15V时的已调波。
3.实现抑制载波调幅
(1).调RP1使调制端平衡,并在载波信号输入端IN1加VC(t)=10Sin2π×105t(mV)信号,调制信号端IN2不加信号,观察并记录输出端波形。
(2).载波输入端不变,调制信号输入端IN2加VS(t)=100sin2π×103t(mV)信号,观察记录波形,并标明峰一峰值电压。
(3).加大示波器扫描速率,观察记录已调波在零点附近波形,比较它与m=100%调幅波的区别。
(4).所加载波信号和调制信号均不变,微调RP2为某一个值,观察记录输出波形。
(5).在(4)的条件下,去掉载波信号,观察并记录输出波形,并与调制信号比较。
六、实验报告要求
1.整理实验数据,用坐标纸画出直流调制特性曲线。
2.画出调幅实验中m=30%、m=100%、m>100%的调幅波形,在图上标明峰一峰值电压。
3.画出当改变VAB时能得到几种调幅波形,分析其原因。
4.画出100%调幅波形及抑制载波双边带调幅波形,比较二者的区别。
5.画出实现抑制载波调幅时改变RP2后的输出波形,分析其现象。
实验六调幅波信号的解调
一、实验目的
1.进一步了解调幅波的原理,掌握调幅波的解调方法。
2.了解二极管包络检波的主要指标,检波效率及波形失真。
3.掌握用集成电路实现同步检波的方法。
二、预习要求
1.复习课本中有关调幅和解调原理。
2.分析二极管包络检波产生波形失真的主要因素。
三、实验仪器设备
1.双踪示波器
2.高频信号发生器
3.万用表
4.实验板G3
四、实验电路说明
调幅波的解调即是从调幅信号中取出调制信号的过程,通常称之为检波。
调幅波解调方法有二极管包络检波器和同步检波器。
1.二极管包络检波器
适合于解调含有较大载波分量的大信号的检波过程,它具有电路简单,易于实现,本实验如图6-1所示,主要由二极管D及RC低通滤波器组成,它利用二极管的单向导电特性和检波负载RC的充放电过程实现检波。
所以RC时间常数选择很重要,RC时间常数过大,则会产生对角切割失真。
RC时间常数太小,高频分量会滤不干净。
图6-1二极管包络检波器
综合考虑要求满足下式:
其中:
m为调幅系数,fO为载波频率,Ω为调制信号角频率。
图中A对输入的调幅波进行幅度放大(满足大信号的要求),D是检波二极管,R4、C2、C3滤掉残余的高频分量,R5、和RP1是可调检波直流负载,C5、R6、RP2是可调检波交流负载,改变RP1和RP2可观察负载对检波效率和波形的影响。
2.同步检波器
利用一个和调幅信号的载波同频同相的载波信号与调幅波相乘,再通过低通滤波器滤除高频分量而获得调制信号。
本实验如图6-2所示,采用1496集成电路构成解调器,载波信号VC经过电容C1加在⑧、⑩脚之间,调幅信号VAM经电容C2加在①、④脚之间,相乘后信号由(12)脚输出,经C4、C5