曲线拟合线性最小二乘法及其MATLAB程序.docx
《曲线拟合线性最小二乘法及其MATLAB程序.docx》由会员分享,可在线阅读,更多相关《曲线拟合线性最小二乘法及其MATLAB程序.docx(24页珍藏版)》请在冰豆网上搜索。
曲线拟合线性最小二乘法及其MATLAB程序
1曲线拟合的线性最小二乘法及其MATLAB程序
例7.2.1给出一组数据点列入表
7–2中,试用线性最小二乘法求拟合曲线,并用(7.2),(7.3)和(7.4)式估计其误差,作出拟合曲线.
表7–2例7.2.1的一组数据
xi
-2.5-1.7-1.1-0.800.11.52.73.6
yi
-192.9-85.50-36.15-26.52-9.10-8.43-13.126.5068.04
解
(1)在MATLAB工作窗口输入程序
>>x=[-2.5-1.7-1.1-0.800.11.52.73.6];
y=[-192.9-85.50-36.15-26.52-9.10-8.43-13.126.5068.04];
plot(x,y,'r*'),
legend('实验数据(xi,yi)')
xlabel('x'),ylabel('y'),
title('例7.2.1的数据点(xi,yi)的散点图')
运行后屏幕显示数据的散点图(略).
(3)编写下列MATLAB程序计算在
处的函数值,即输入程序
>>symsa1a2a3a4
x=[-2.5-1.7-1.1-0.800.11.52.73.6];
fi=a1.*x.^3+a2.*x.^2+a3.*x+a4
运行后屏幕显示关于a1,a2,a3和a4的线性方程组
fi=[-125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4,
a4,1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4]
编写构造误差平方和的MATLAB程序
>>y=[-192.9-85.50-36.15-26.52-9.10-8.43-13.126.5068.04];
fi=[-125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4,a4,1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4];
fy=fi-y;fy2=fy.^2;J=sum(fy.^2)
运行后屏幕显示误差平方和如下
J=
(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2
为求使达到
最小,只需利用极值的必要条件
,得到关于的
线性方程组,这可以由下面的MATLAB程序完成,即输入程序
>>symsa1a2a3a4
J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4...+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2;
Ja1=diff(J,a1);Ja2=diff(J,a2);Ja3=diff(J,a3);Ja4=diff(J,a4);
Ja11=simple(Ja1),Ja21=simple(Ja2),Ja31=simple(Ja3),Ja41=simple(Ja4),
运行后屏幕显示J分别对a1,a2,a3,a4的偏导数如下
Ja11=
56918107/10000*a1+32097579/25000*a2+1377283/2500*a3+23667/250*a4-8442429/625
Ja21=
32097579/25000*a1+1377283/2500*a2+23667/250*a3+67*a4+767319/625
Ja31=
1377283/2500*a1+23667/250*a2+67*a3+18/5*a4-232638/125
Ja41=
23667/250*a1+67*a2+18/5*a3+18*a4+14859/25
解线性方程组Ja11=0,Ja21=0,Ja31=0,Ja41=0,输入下列程序
>>A=[56918107/10000,32097579/25000,1377283/2500,23667/250;32097579/25000,1377283/2500,23667/250,67;1377283/2500,23667/250,67,18/5;23667/250,67,18/5,18];
B=[8442429/625,-767319/625,232638/125,-14859/25];
C=B/A,f=poly2sym(C)
运行后屏幕显示拟合函数f及其系数C如下
C=5.0911-14.19056.4102-8.2574
f=716503695845759/140737488355328*x^3
-7988544102557579/562949953421312*x^2
+1804307491277693/281474976710656*x
-4648521160813215/562949953421312
故所求的拟合曲线为
.
(4)编写下面的MATLAB程序估计其误差,并作出拟合曲线和数据的图形.输入程序
>>xi=[-2.5-1.7-1.1-0.800.11.52.73.6];
y=[-192.9-85.50-36.15-26.52-9.10-8.43-13.126.5068.04];
n=length(xi);
f=5.0911.*xi.^3-14.1905.*xi.^2+6.4102.*xi-8.2574;
x=-2.5:
0.01:
3.6;
F=5.0911.*x.^3-14.1905.*x.^2+6.4102.*x-8.2574;
fy=abs(f-y);fy2=fy.^2;Ew=max(fy),
E1=sum(fy)/n,E2=sqrt((sum(fy2))/n)
plot(xi,y,'r*'),holdon,plot(x,F,'b-'),holdoff
legend('数据点(xi,yi)','拟合曲线y=f(x)'),
xlabel('x'),ylabel('y'),
title('例7.2.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')
运行后屏幕显示数据与
拟合函数f的最大误差Ew,平均误差E1和均方根误差E2及其数据点和
拟合曲线y=f(x)的图形(略).
Ew=E1=E2=
3.10540.90341.2409
7.3函数的选取
及其MATLAB程序
例7.3.1给出一组实验数据点的
横坐标向量为x=(-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5,-2.7,-3.6),纵横坐标向量为y=(459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47,12.87,11.87,6.69,14.87,24.22),试用线性最小二乘法求拟合曲线,并用(7.2),(7.3)和(7.4)式估计其误差,作出拟合曲线.
解
(1)在MATLAB工作窗口输入程序
>>x=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5,-2.7,-3.6];
y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47,12.87,11.87,6.69,14.87,24.22];
plot(x,y,'r*'),legend('实验数据(xi,yi)')
xlabel('x'),ylabel('y'),
title('例7.3.1的数据点(xi,yi)的散点图')
运行后屏幕显示数据的散点图(略).
(3)编写下列MATLAB程序计算在
处的函数值,即输入程序
>>symsab
x=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5,-2.7,-3.6];fi=a.*exp(-b.*x)
运行后屏幕显示关于a和b的线性方程组
fi=
[a*exp(17/2*b),a*exp(87/10*b),a*exp(71/10*b),a*exp(34/5*b),a*exp(51/10*b),a*exp(9/2*b),a*exp(18/5*b),a*exp(17/5*b),a*exp(13/5*b),a*exp(5/2*b),a*exp(21/10*b),a*exp(3/2*b),a*exp(27/10*b),a*exp(18/5*b)]
编写构造误差平方和的MATLAB程序如下
>>y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47,12.87,11.87,6.69,14.87,24.22];
fi=[a*exp(17/2*b),a*exp(87/10*b),a*exp(71/10*b),a*exp(34/5*b),a*exp(51/10*b),a*exp(9/2*b),a*exp(18/5*b),a*exp(17/5*b),a*exp(13/5*b),a*exp(5/2*b),a*exp(21/10*b),a*exp(3/2*b),a*exp(27/10*b),a*exp(18/5*b)];
fy=fi-y;
fy2=fy.^2;
J=sum(fy.^2)
运行后屏幕显示误差平方和如下
J=
(a*exp(17/2*b)-22963/50)^2+(a*exp(87/10*b)-5281/100)^2+(a*exp(71/10*b)-19827/100)^2+(a*exp(34/5*b)-828/5)^2+(a*exp(51/10*b)-5917/100)^2+(a*exp(9/2*b)-2083/50)^2+(a*exp(18/5*b)-648/25)^2+(a*exp(17/5*b)-2237/100)^2+(a*exp(13/5*b)-1347/100)^2+(a*exp(5/2*b)-1287/100)^2+(a*exp(21/10*b)-1187/100)^2+(a*exp(3/2*b)-669/100)^2+(a*exp(27/10*b)-1487/100)^2+(a*exp(18/5*b)-1211/50)^2
为求使达到
最小,只需利用极值的必要条件,得到关于的
线性方程组,这可以由下面的MATLAB程序完成,即输入程序
>>symsab
J=(a*exp(17/2*b)-22963/50)^2+(a*exp(87/10*b)-5281/100)^2+(a*exp(71/10*b)-19827/100)^2+(a*exp(34/5*b)-828/5)^2+(a*exp(51/10*b)-5917/100)^2+(a*exp(9/2*b)-2083/50)^2+(a*exp(18/5*b)-648/25)^2+(a*exp(17/5*b)-2237/100)^2+(a*exp(13/5*b)-1347/100)^2+(a*exp(5/2*b)-1287/100)^2+(a*exp(21/10*b)-1187/100)^2+(a*exp(3/2*b)-669/100)^2+(a*exp(27/10*b)-1487/100)^2+(a*exp(18/5*b)-1211/50)^2;
Ja=diff(J,a);Jb=diff(J,b);
Ja1=simple(Ja),Jb1=simple(Jb),
运行后屏幕显示J分别对的偏导数
如下
Ja1=
2*a*exp(3*b)+2*a*exp(17*b)+2*a*exp(87/5*b)+2*exp(68/5*b)*a+2*exp(9*b)*a+2*a*exp(34/5*b)-669/50*exp(3/2*b)-1487/50*exp(27/10*b)-2507/25*exp(18/5*b)-22963/25*exp(17/2*b)-5281/50*exp(87/10*b)-19827/50*exp(71/10*b)-2237/50*exp(17/5*b)-1656/5*exp(34/5*b)-1347/50*exp(13/5*b)-5917/50*exp(51/10*b)-1287/50*exp(5/2*b)-2083/25*exp(9/2*b)-1187/50*exp(21/10*b)+4*a*exp(36/5*b)+2*a*exp(26/5*b)+2*a*exp(71/5*b)+2*a*exp(51/5*b)+2*a*exp(5*b)+2*a*exp(21/5*b)+2*a*exp(27/5*b)
Jb1=
1/500*a*(2100*a*exp(21/10*b)^2+8500*a*exp(17/2*b)^2+6800*a*exp(34/5*b)^2-10035*exp(3/2*b)-40149*exp(27/10*b)-180504*exp(18/5*b)-3903710*exp(17/2*b)-459447*exp(87/10*b)-1407717*exp(71/10*b)-76058*exp(17/5*b)-1126080*exp(34/5*b)-35022*exp(13/5*b)-301767*exp(51/10*b)-32175*exp(5/2*b)-187470*exp(9/2*b)-24927*exp(21/10*b)+7100*a*exp(71/10*b)^2+5100*a*exp(51/10*b)^2+4500*a*exp(9/2*b)^2+7200*a*exp(18/5*b)^2+3400*a*exp(17/5*b)^2+2600*a*exp(13/5*b)^2+2500*a*exp(5/2*b)^2+1500*a*exp(3/2*b)^2+2700*a*exp(27/10*b)^2+8700*a*exp(87/10*b)^2)
用解二元非线性方程组的牛顿法的MATLAB程序求解线性方程组Ja1=0,Jb1=0,得
a=b=
2.81100.5816
故所求的拟合曲线(7.13)为
e
.(7.14)
(4)根据(7.2),(7.3),(7.4)和(7.14)式编写下面的MATLAB程序估计其误差,并做出拟合曲线和数据的图形.输入程序
>>xi=[-8.5-8.7-7.1-6.8-5.10-4.5-3.6-3.4-2.6-2.5-2.1-1.5-2.7-3.6];
y=[459.2652.81198.27165.6059.1741.6625.9222.3713.4712.8711.876.6914.8724.22];
n=length(xi);f=2.8110.*exp(-0.5816.*xi);x=-9:
0.01:
-1;
F=2.8110.*exp(-0.5816.*x);fy=abs(f-y);fy2=fy.^2;Ew=max(fy),
E1=sum(fy)/n,E2=sqrt((sum(fy2))/n),plot(xi,y,'r*'),holdon
plot(x,F,'b-'),holdoff,
legend('数据点(xi,yi)','拟合曲线y=f(x)')
xlabel('x'),ylabel('y'),
title('例7.3.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')
运行后屏幕显示数据与
拟合函数f的最大误差Ew=390.1415,平均误差E1=36.9422和均方根误差E2=106.0317及其数据点和拟合曲
线y=f(x)的图形(略).
7.4多项式拟合及其MATLAB程序
例7.4.1给出一组数据点列入表
7–3中,试用线性最小二乘法求拟合曲线,并用(7.2),(7.3)和(7.4)式估计其误差,作出拟合曲线.
表7–3例7.4.1的一组数据
xi
-2.9-1.9-1.1-0.800.11.52.73.6
yi
53.9433.6820.8816.928.798.984.179.1219.88
解
(1)首先根据表7–3给出的数据点
,用下列MATLAB程序画出散点图.
在MATLAB工作窗口输入程序
>>x=[-2.9-1.9-1.1-0.800.11.52.73.6];
y=[53.9433.6820.8816.928.798.984.179.1219.88];
plot(x,y,'r*'),legend('数据点(xi,yi)')
xlabel('x'),ylabel('y'),
title('例7.4.1的数据点(xi,yi)的散点图')
运行后屏幕显示数据的散点图(略).
(3)用作线性最小二乘拟合的多项式拟合的MATLAB程序求待定系数
.输入程序
>>a=polyfit(x,y,2)
运行后输出(7.16)式的系数
a=
2.8302-7.37219.1382
故拟合多项式为
.
(4)编写下面的MATLAB程序估计其误差,并做出拟合曲线和数据的图形.输入程序
>>xi=[-2.9-1.9-1.1-0.800.11.52.73.6];
y=[53.9433.6820.8816.928.798.984.179.1219.88];
n=length(xi);f=2.8302.*xi.^2-7.3721.*xi+9.1382
x=-2.9:
0.001:
3.6;F=2.8302.*x.^2-7.3721.*x+8.79;
fy=abs(f-y);fy2=fy.^2;Ew=max(fy),E1=sum(fy)/n,
E2=sqrt((sum(fy2))/n),plot(xi,y,'r*',x,F,'b-'),
legend('数据点(xi,yi)','拟合曲线y=f(x)')
xlabel('x'),ylabel('y'),
title('例7.4.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')
运行后屏幕显示数据与
拟合函数f的最大误差Ew,平均误差E1和均方根误差E2及其数据点(xi,yi)和拟合曲线y=f(x)的图形(略).
Ew=E1=E2=
0.7457,0.3892,0.4363
7.5拟合曲线的线性变换及其MATLAB程序
例7.5.1给出一组实验数据点的
横坐标向量为x=(7.56.85.104.53.63.42.62.52.11.52.73.6),纵横坐标向量为y=(359.26165.6059.1741.6625.9222.3713.4712.8711.876.6914.8724.22),试用线性变换和线性最小二乘法求拟合曲线,并用(7.2),(7.3)和(7.4)式估计其误差,作出拟合曲线.
解
(1)首先根据给出的数据点
,用下列MATLAB程序画出散点图.
在MATLAB工作窗口输入程序
>>x=[7.56.85.104.53.63.42.62.52.11.52.73.6];
y=[359.26165.6059.1741.6625.9222.3713.4712.8711.876.6914.8724.22];
plot(x,y,'r*'),legend('数据点(xi,yi)')
xlabel('x'),ylabel('y'),
title('例7.5.1的数据点(xi,yi)的散点图')
运行后屏幕显示数据的散点图(略).
(2)根据数据散点图,取拟合曲线为
e
(7.19)
其中是待定
系数.令
,则(7.19)化为
.在MATLAB工作窗口输入程序
>>x=[7.56.85.104.5