四旋翼无人机设计与制作毕业论文.docx

上传人:b****0 文档编号:291305 上传时间:2022-10-08 格式:DOCX 页数:38 大小:1.88MB
下载 相关 举报
四旋翼无人机设计与制作毕业论文.docx_第1页
第1页 / 共38页
四旋翼无人机设计与制作毕业论文.docx_第2页
第2页 / 共38页
四旋翼无人机设计与制作毕业论文.docx_第3页
第3页 / 共38页
四旋翼无人机设计与制作毕业论文.docx_第4页
第4页 / 共38页
四旋翼无人机设计与制作毕业论文.docx_第5页
第5页 / 共38页
点击查看更多>>
下载资源
资源描述

四旋翼无人机设计与制作毕业论文.docx

《四旋翼无人机设计与制作毕业论文.docx》由会员分享,可在线阅读,更多相关《四旋翼无人机设计与制作毕业论文.docx(38页珍藏版)》请在冰豆网上搜索。

四旋翼无人机设计与制作毕业论文.docx

四旋翼无人机设计与制作毕业论文

四旋翼无人机设计与制作毕业论文

绪论

1.1研究背景及意义

随着MEMS传感器、无刷电机、单片机以及锂电池技术的发展,四旋翼飞行器现在已经成为航模界的后起之秀。

与固定翼飞行器相比之下四旋翼飞行器具有结构简单,控制起来非常方便,能够垂直起降,成本非常的低、稳定性也高,机动性非常强等特点。

在民用可以代替有人机完成一些任务,在军事上有很强的战场生存能力。

因此在这些领域应用广泛,如军事侦查、农林业调查、灾害检测、输电线巡查、玩具航模、航拍、气象探测等。

四旋翼飞行器的飞行原理虽然简单,但是涉及到的知识面非常的广[],从机体结构的设计、传感器滤波算法、控制系统的设计和软件的设计都需要理论的支持。

本次设计针对四旋翼飞行器姿态控制系统进行更深入的研究,它的研究将推动中国四旋翼飞行器的研究发展,为四旋翼飞行器在环境保护、气象、火灾、侦查追踪等民用和军用领域实现产业化作出突出贡献。

廉价并且高性能的飞行器的研究将会拥有巨大的经济效益,能够对我国的科研事业起到巨大的推动作用。

1.2国内外四旋翼飞行器的研究现状

1.2.1国外四旋翼飞行器的研究现状

目前国外四旋翼飞行器的研究也是主要集中在飞行器姿态控制系统的新的理论的研究,比如:

神经元网络控制算法、模糊自适应控制算法等。

国外还在四旋翼飞行器的自主飞行以及多机协同运作等方面有很多研究。

下面对一些四旋翼飞行器进行简单的介绍:

首先非常具有代表性的是美国Draganflyer公司研发出来的Draganflyer系列四旋翼飞行器[],如图1.1所示。

这种四旋翼飞行器主要使用碳纤材料制作,因其载重能力强能携带高清摄像机,因此主要用途为航拍。

另外还有Parrot公司研发的AR.Drone飞行器也是非常具有代表性,如图1.2所示。

AR.Drone可以用手机远程控制,使用MEMS高精度姿态传感器,并且配备多种传感器和摄像头,使AR.Drone可以非常轻松地进行飞行任务[]。

德国在四旋翼飞行器研究方面也具有较高的水平,德国的MicroDrones公司推出的一款四旋翼飞行器MD4-200[],如图1.3所示。

该型号飞行器采用全碳纤工艺制作,负载能力强,而且非常省电。

该型号飞行器配备有GPS卫星导航系统和摄像设备,能够很轻松的在室内和室外执行航拍任务。

图1.1DraganflyerX4四旋翼飞行器图1.2AR.Drone飞行器

现在许多科研院所已开始开展四旋翼飞行器相关科研项目,主要是针对四旋翼飞行器系统建模的研究和四旋翼飞行器飞行功能的实现。

美国宾夕法尼亚大学GRASP实验室设计出了一种能够编队飞行的四旋翼无人机飞行器,在这些飞行器上都安装有光源,通过安装在室内墙壁上的摄像头设备进行拍摄,从而确定飞行器的空间位置并且对其进行编队飞行控制操作,如图1.4所示。

麻省理工学院设计的一款可以在室内进行地图测绘,定位和壁障的四旋翼无人飞行器系统,该系统通过激光雷达对周围环境进行测量,而且能够自动生成三维地图数据,并且根据周围的环境进行自主壁障和飞行路径规划,可以用于为危险环境的探测和搜救,如图1.5所示。

图1.3德国MD4-200四旋翼飞行器图1.4宾夕法尼亚大学四旋翼编队飞行

 

1.2.2国内四旋翼飞行器的研究现状

现今四旋翼飞行器的研究在国内逐渐发展壮大并且已经形成产业。

目前国内己经有许多公司(如Dj大疆公司)将四旋翼飞行器应用于商业化,如图1.6所示。

图1.5麻省理工学院四旋翼飞行器图1.6大疆四旋翼飞行器

目前对四旋翼飞行器的研究主要集中在以下几个方面:

(1)四旋翼飞行器的姿态控制。

四旋翼飞行器研究的最主要技术难点在于对飞行姿态的控制。

因其旋翼多,因此四旋翼飞行器比传统的直升机控制起来复杂。

目前该领域的研究方向主要集中在飞行器的数学建模、控制算法和滤波算法。

目前主要的研究算法有刚体旋转理论、非线性滤波法、四元数、捷联惯导算法、PID控制算法、模糊自适应控制等。

(2)适合于四旋翼飞行器的新的传感器技术的发展,国内外逐渐出现了通用的整合于一体的传感器模块,例如MPU6050传感器就是把加速度计和陀螺仪集成在一起。

(3)电机和电池领域的发展。

近些年来,无刷电机和空心杯电机的进一步普及和应用于四旋翼飞行器上,四旋翼飞行器的动力得到了很大程度的提高。

锂电池和燃料电池的出现和应用大大增加了飞行器的续航能力。

(4)GPS的发展。

随着卫星定位技术的发展壮大,GPS也逐渐应用于旋翼飞行器,人们可以不用害怕飞行器故障之后会不会找不到,因为我们可以用GPS进行卫星定位,而且还可以设置航点,实现飞行器的自主飞行。

(5)无线传输模块的发展。

现如今无线传输可以应用的范围越来越广泛,蓝牙、WIFI等无线传输方式越来越被普遍应用到飞行器上,从而实现手机的遥控控制。

1.3本文研究内容和方法

本文研究基于MEMS传感器的姿态参考系统,通过对姿态测量传感器数据的分析,设计出了有效去噪的滤波方法;通过大量的查找资料对姿态解算算法和数据融合算法有了更深的理解,最后应用于设计的飞行控制器上实现了姿态角的测量。

最后通过大量的实验验证了它们的准确性,实验数据和曲线验证了该姿态参考系统能够稳定的工作,具有很好地工作性能。

本文一共分为五章,主要内容安排如下:

第一章绪论部分主要介绍了该项目的研究背景及意义、四旋翼飞行器在国内外的研究现状和发展趋势。

第二章主要介绍了四旋翼飞行器的飞行原理和系统结构框架。

第三章详细介绍了四旋翼无人机控制系统的硬件设计的工作。

介绍了MEMS传感器的原理、特性和型号的选择和硬件电路图。

飞行器控制芯片选择STM32,外围电路包括有姿态测量系统、电源模块、无线通讯、串口通讯、电机驱动、遥控器控制电路、GPS模块。

第四章说明了姿态参考系统的核心算法----捷联惯性导航算法的研究和实现过程。

第五章针对软件实现部分进行了介绍,给出了编程的软件流程图和串级PID控制和定高控制方法。

最后对本次设计进行了总结,提出了不足之处并对今后的研究工作进行了展望。

2四旋翼飞行器工作原理

2.1四旋翼飞行器的飞行原理

四旋翼飞行器有两种模式,也就是X字模式(如图2.1所示)和十字模式(如图2.2所示)。

其实这两种模式差别不大,到X模式使用广泛,因此我们采用X字模式。

四旋翼飞行器的四个电机对称分布在各个轴上,并且同一条轴线上电机的旋转方向要保证相同,相邻的电机旋转方向相反[]。

如果电机1、3按照逆时针方向旋转的话,电机2、4就要按照顺时针方向旋转,这样做为了克服反扭矩的影响。

我们要通过控制4个电机的转速来完成飞行器俯仰、横滚、偏航等动作。

图2.1X型四旋翼飞行器模型图2.2十字型四旋翼飞行器模型

2.2四旋翼飞行器系统结构

四旋翼无人机采用模块化设计,如图2.3所示。

分别由控制模块、姿态测量系统、电源供电系统、无线通信模块、GPS卫星定位系统、遥控器控制模块、电机驱动模块、串口通信模块、地面站系统。

四旋翼飞行器控制器的核心任务是姿态的测量,它的作用是为飞行器控制系统提供实时、精确的飞行状态测量数据。

常见的四旋翼飞行器人们大多是采用基于MEMS传感器来测量飞行器姿态数据[]。

但是这些初始的传感器数据并不能直接应用于姿态解算,需要对传感器数据进行滤波处理,并且需要对陀螺仪漂移问题进行实时的数据补偿,这样做能够有效提高飞行器姿态测量精度,确保控制系统的姿态角的准确性和稳定性。

图2.3四旋翼飞行器系统结构框架

四旋翼飞行器的主控板选择的是意法半导体公司生产的STM32f103zet芯片,STM32系列的单片机是基于Cortex-M3内核的处理器,功耗低,处理速度非常快,最高工作频率可达72MHz,7通道DMA控制器,支持定时器、ADC、SPI、IIC、USART等外设,多达112个I/O口,8个Timer定时器,5个串行USART接口,3个SPI接口,2个IIC接口[]。

电源模块采用11.1V锂电池外部供电,连接电子调速器为控制器提供5V电压。

控制器上还有3.3V稳压芯片,为控制芯片供电。

遥控器控制模块,控制器对遥控器数据进行捕获处理该部分我们通过对STM32定时器进行输入捕获配置,捕获接收机发出的PWM信号,把该信号转化成控制量在经过PID控制把输出量给四个电机,进而控制飞行器的动作。

GPS卫星定位导航系统,配合上位机在上位机上输入一些GPS坐标点,控制系统就会自动生成航线,并且能够从GPS系统中读取定位数据[],并且与存储的定位坐标做实时的对比,然后修正航线,将定位坐标显示在上位机上,处理并显示当前位置。

3四旋翼飞行器硬件系统设计

3.1微惯性组合系统传感器组成

3.1.1MEMS陀螺仪传感器

陀螺仪是一种能用来维持方向与角速度(获取角速度)的装置,设计原理是角动量守恒。

简单的说就是一个高速旋转的物体的旋转轴所指的方向在不受外力影响时不会改变。

这种用来保持方向而制造出来的装置就叫陀螺仪[],如图3.1所示。

陀螺仪多用于导航定位系统中,姿态控制系统中多采用三轴陀螺仪,如图3.2所示。

图3.1陀螺仪图3.2MEMS三轴陀螺仪

3.1.2MEMS加速度计传感器

能将物体加速度的信息转换为电信号的传感器称之为加速度传感器。

在姿态控制系统中,加速度传感器用来测量与重力方向的夹角。

当应用到实际中时我们就可以理解加速度传感器输出的信号是当地坐标系下加速度在导航坐标系下投影。

加速度计能够在没有加速度存在的条件下可以感应重力产生的加速度,然而在有加速度存在时,根本无法测量出姿态角,需要陀螺仪传感器的数据相结合,才能够实现动态条件下的姿态测量[]。

 

3.1.3三轴数字罗盘传感器

数字电子罗盘也叫指南针,顾名思义指南针是用来指示方向的。

传统罗盘通过磁针来感应地磁场方向,电子罗盘通过磁阻传感器测量地磁方向信息,再将所测信息转换为信号输出。

数字电子罗盘的优势在于它克服了只能够在水平面使用的缺点,这种数字电子罗盘内部有倾斜补偿装置,这个装置一般是由加速度传感器来完成,如果在完全动态的情况下,也需要陀螺仪检测姿态角,通过这个角度和磁场方向信息可以补偿得到准确的角度信息,而姿态测量系统中的电子罗盘实际上就是三轴数字电子罗盘。

3.2姿态测量系统传感器选型

目前市场上出现的一款InvenSense公司的MPU6050芯片内部集成了三轴加速度计和三轴陀螺仪,这样做不仅消除了焊接电路时易造成加速度计和陀螺仪之间的对准误差的问题,而且因为芯片内部结构上有数字可编程低通滤波器。

所以在飞行器经受较大震动的时候,可以用软件设置适当频率的低通滤波器,滤掉高频震动,这种方法很有效的减少了四旋翼机身震动对姿态测量的影响。

因此MPU6050被广泛应用于姿态控制系统之中,其特征如下:

(1)三轴角速度传感器具有±250、±500、±1000与±2000(°/s)测量范围[];三轴加速度量程控制范围有±2g、±4g、±8g、和±16g。

(2)具备较低功耗:

芯片供电电压VDD为2.5V±5%、3.0V±5%、3.3V±5%[];陀螺仪工作电流5mA,待机电流为5uA;加速度计工作电流为500uA,在10Hz低功耗模式下仅需40uA的电流[]。

(3)陀螺仪和加速度计都具备16位ADC同步采样功能。

(4)IIC接口传输频率可高达400KHz,内建频率发生器在所有温度范围只有1%频率变化。

综合MPU6050特性,我们采用如图3.3所示的电路读取三轴加速度和三轴陀螺仪数据。

图3.3MPU6050电路图

HMC5883传感器是三轴数字罗盘,它可以用来测量四轴飞行器所处位置的三轴磁场信息,该传感器内置了三轴磁阻模块和放大采样电路,直接输出数字信号,用来测量航向角并进行姿态解算,HMC5883电路图如图3.4所示。

HMC5883的特点如下:

1.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 商业计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1