五步攻破中考数学压轴题.docx
《五步攻破中考数学压轴题.docx》由会员分享,可在线阅读,更多相关《五步攻破中考数学压轴题.docx(12页珍藏版)》请在冰豆网上搜索。
五步攻破中考数学压轴题
对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它。
其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。
这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法。
......
对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它。
其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。
这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法。
压轴题难度有约定
历年中考,压轴题一般都由3个小题组成。
第
(1)题容易上手,得分率在0.8以上;第
(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。
控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色,以往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。
决不靠猜题和押题
压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。
如果以为这是构造压轴题的唯一方式那就错了。
方程与图形的综合的几何问题也是常见的综合方式,如去年中考的第25(3)题,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例。
动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起。
在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。
总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。
分析结构理清关系
解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。
如去年第25题的
(1)、
(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,
(1)的结论与
(2)的解题无关,
(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。
又如2007年第25题,
(1)、
(2)两个小题是“递进关系”,
(1)的结论由大题的已知条件证得,除已知外,
(1)的结论又是解
(2)所必要的条件之一。
但(3)与
(1)、
(2)却是“平列关系”,
(1)中,动
点P在射线AN上,而(3)根据已知,动点P在射线AN上。
它除了可能在射线AN上,还可能在AN的反向延长线上,或与点A重合。
因此需要“分类讨论”。
如果将
(1)、
(2)的结论作为条件解(3),将会使你坠入“陷阱”,不能自拔。
应对策略必须抓牢
学生害怕“压轴题”,恐怕与“题海战术”有关。
中考前,盲目地多做难题是有害的。
从外省市中考卷或从前几年各区模拟考卷中选题时,特别要留意它是否超出今年中考的考查范围。
有关部门已明确,拓展II的教学内容不属于今年中考的范围,如代数中的“一元二次方程的根与系数的关系”、“用‘两根式’和‘顶点式’来求二次函数的解析式”、“二次函数的应用”等,几何中“圆的切线的判定和性质”、“四点共圆的性质和判定”等,因此这些内容不可能作为构造压轴题的“作料”。
为了应对中考压轴题,教师可以根据实际,为学生精选一二十道,但不必强求一律,对有的学生可以只要求他做其中的第
(1)题或第
(2)题。
盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,结果必然是得不偿失。
事实证明:
有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上,因此在最后总复习阶段,还是应当把功夫花在夯实基础、总结归纳上,老师要帮助学生打通思路,掌握方法,指导他们灵活运用知识。
有经验的老师常常把压轴题分解为若干个“小综合题”,并进行剪裁与组合,或把外省市的某些较难的“填空题”,升格为“简答题”,把“熟题”变式为“陌生题”,让学生练习,花的时间虽不多,但能取得较好的效果。
我认为:
综合题的解题能力不能靠一时一日的“拔苗助长”而要靠日积月累的培养和训练。
在总复习阶段,对大部分学生而言,放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。
不要太受区考影响
说实在,现在流行的“压轴题”真是难为我们的学生了。
从今年各区的统考试卷看,有的压轴题的综合度太大,以致命题者自己在“参考答案”中表达解题过程都要用去A4纸一页还多。
为了应付中考压轴题,有的题拔高了对数学思想方法的考查要求,如有道题,
(2)、(3)两题都要分好几种情况进行“分类讨论”,初中阶段只要求学生初步领会基本的数学思想方法。
因此在中考中也只能在考查基础知识、基本技能和基本方法中有所渗透和体现而已,希望命题者手下留情,不要再打“擦边球”,搞“深挖洞”了。
更希望今年中考数学卷能够控制住最后两题的难度,不要再“双压轴”了。
对一些在区统考时,“压轴题”面前打了“败仗”的同学,我劝你们振奋起精神来,不要因为这次统考,压轴题不会做或得分过低而垂头丧气,提高信心和勇气是第一位的。
你们要发挥自
己的优势,更加重视基础,努力做到把会做的题,做对做好,以此尽力挽回压轴题的失分,你一定会在中考中取得好成绩的,预祝你中考成功!
xx数学考高分五大“攻略”
如何集中“兵力”,拿下中考数学高分呢?
来看看下面的五大“攻略”吧。
攻略一:
概念记清,基础夯实。
数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是选择题,要靠......
如何集中“兵力”,拿下中考数学高分呢?
来看看下面的五大“攻略”吧。
攻略一:
概念记清,基础夯实。
数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是选择题,要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。
因此,要把已经学过的教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
攻略二:
适当做题,巧做为王。
有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却没有什么提高,这就陷入了做题的误区。
数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,要“苦做”更要“巧做”。
考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
攻略三:
前后联系,纵横贯通。
在做题中要注重发现题与题之间的内在联系,绝不能“傻做”。
在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到“触类旁通”的境界。
特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。
攻略四:
记录错题,避免再犯。
俗话说,“一朝被蛇咬,十年怕井绳”,可是同学们常会一次又一次地掉入相似甚至相同的“陷阱”里。
因此,建议大家在平时的做题中就要及时记录错题,还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。
毕竟,中考当中是“分分必争”,一分也丢不得。
攻略五:
集中兵力,攻下弱点。
每个人都有自己的“软肋”,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。
因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成“瘸腿”。
初中几何公式、定理复习指导
1过两点有且只有一条直线
2两点之间线段最短
3同角或等角的补角相等
4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行
8如果两条直线都和第三条直线平行,这两条直线也互相平行
9同位角相等,两直线平行
10内错角相等,两直线平行
11同旁内角互补,两直线平行
12两直线平行,同位角相等
13两直线平行,内错角相等
14两直线平行,同旁内角互补
15定理三角形两边的和大于第三边
16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和
20推论3三角形的一个外角大于任何一个和它不相邻的内角
21全等三角形的对应边、对应角相等
22边角边公理有两边和它们的夹角对应相等的两个三角形全等
23角边角公理有两角和它们的夹边对应相等的两个三角形全等
24推论有两角和其中一角的对边对应相等的两个三角形全等
25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等
27定理1在角的平分线上的点到这个角的两边的距离相等
28定理2到一个角的两边的距离相同的点,在这个角的平分线上
29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等31推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形
36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形
48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3对角线互相平分的四边形是平行四边形
59平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60矩形性质定理1矩形的四个角都是直角
61矩形性质定理2矩形的对角线相等
62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形
64菱形性质定理1菱形的四条边都相等
65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形
68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1关于中心对称的两个图形是全等的
72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
83
(1)比例的基本性质如果a:
b=c:
d,那么ad=bc如果ad=bc,那么a:
b=c:
d
84
(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91相似三角形判定定理1两角对应相等,两三角形相似(ASA)
92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
94判定定理3三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97性质定理2相似三角形周长的比等于相似比
98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理一条弧所对的圆周角等于它所对的圆心角的一半
117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121①直线L和⊙O相交d﹤r
②直线L和⊙O相切d=r
③直线L和⊙O相离d﹥r
122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离d﹥R+r②两圆外切d=R+r
③两圆相交R-r﹤d﹤R+r(R﹥r)
④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)
136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2p表示正n边形的周长
142正三角形面积√3a/4a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:
L=n∏R/180
145扇形面积公式:
S扇形=n∏R/360=LR/2
146内公切线长=d-(R-r)外公切线长=d-(R+r)