机械 自动化 外文翻译 外文文献 英文文献 最小化传感级别不确定性联合策略的机械手控制.docx

上传人:b****5 文档编号:28853221 上传时间:2023-07-20 格式:DOCX 页数:14 大小:35.78KB
下载 相关 举报
机械 自动化 外文翻译 外文文献 英文文献 最小化传感级别不确定性联合策略的机械手控制.docx_第1页
第1页 / 共14页
机械 自动化 外文翻译 外文文献 英文文献 最小化传感级别不确定性联合策略的机械手控制.docx_第2页
第2页 / 共14页
机械 自动化 外文翻译 外文文献 英文文献 最小化传感级别不确定性联合策略的机械手控制.docx_第3页
第3页 / 共14页
机械 自动化 外文翻译 外文文献 英文文献 最小化传感级别不确定性联合策略的机械手控制.docx_第4页
第4页 / 共14页
机械 自动化 外文翻译 外文文献 英文文献 最小化传感级别不确定性联合策略的机械手控制.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

机械 自动化 外文翻译 外文文献 英文文献 最小化传感级别不确定性联合策略的机械手控制.docx

《机械 自动化 外文翻译 外文文献 英文文献 最小化传感级别不确定性联合策略的机械手控制.docx》由会员分享,可在线阅读,更多相关《机械 自动化 外文翻译 外文文献 英文文献 最小化传感级别不确定性联合策略的机械手控制.docx(14页珍藏版)》请在冰豆网上搜索。

机械 自动化 外文翻译 外文文献 英文文献 最小化传感级别不确定性联合策略的机械手控制.docx

机械自动化外文翻译外文文献英文文献最小化传感级别不确定性联合策略的机械手控制

FusionStrategiesforMinimizingSensing-Level

UncertaintyinManipulatorControl

Abstract:

Humanoidroboticapplicationsrequirerobottoactandbehavelikehumanbeing.Follow-ingsoftcomputinglikeapproachhumanbeingcanthink,decideandcontrolhimselfinunstructureddynamicsurroundings,whereagreatdegreeofuncertaintyexistsintheinformationobtainedthroughsensoryorgans.Intheroboticsdomainalso,oneofthekeyissuesinextractingusefulknowledgefromsensorydataisthatofcopingwithinformationaswellassensoryuncertaintyatvariouslevels.Inthispaperageneralizedfusionbasedhybridclassifier(ANN-FDD-FFA)hasbeendevelopedandappliedforvalidatingongeneratedsyntheticdatafromobservationmodelaswellasfromrealhardwarerobot.Thefusiongoal,selectedhere,isprimarilytominimizeuncertaintiesinroboticmanipulationtasksthatarebasedoninternal(jointsensors)aswellasexternal(visioncamera)sensoryinformation.Theeffectivenessofpresentmethodologyhasbeenextensivelystudiedwithaspeciallyconfiguredexperimentalrobothavingfivedegreesoffreedomandasimulatedmodelofavisionguidedmanipulator.Inthepresentinvestigationmainuncertaintyhandlingapproachincludesweightedparameterselection(ofgeometricfusion)byatrainedneuralnetworkthatisnotavailableinstandardmanipulatorroboticcontrollerdesigns.Theseapproachesinhybridconfigurationhassig-nificantlyreducetheuncertaintyatdifferentlevelsforfasterandmoreaccuratemanipulatorcontrolasdemonstratedherethroughrigoroussimulationsandexperimentations.

Keywords:

sensor,fusion,FDD,FFA,ANN,computing,manipulators,repeatability,accuracy,covariance,matrix,uncertainty,uncertaintyellipsoid.

1.Introduction

applications(industrial,military,scientific,medicine,welfare,householdandamusement)areincreasinglycomingupwithrecentprog-ressinwhicharobothastooperateinlargeandunstructuredenvironment[3,12,15].Inmostcases,theknowledgeofhowthesurroundingsarechangingeveryinstantisfundamentallyimportantforanoptimalcontrolofrobotmotions.Mobilerobotsalsoessentiallyhavetonavigateandoperateinverylargeunstruc-tureddynamicsurroundingsanddealwithsignificantuncertainty[1,9,19].When-everarobotisoperatinginanaturalnondeterministicenvironment,therealwaysexistssomedegreeofuncertaintyintheconditionsunderwhichagivenjobwillbedone.Theseconditionsmay,attimes,varywhileagivenoperationisbeingcarriedout.Themajorcausesleadingtotheuncertaintyarethediscrepanciesarisingintherobotmotionparametersandinthevarioustask-defininginformation.Theamountbywhichtheydifferfromthosecalledforintheprocessspecificationsmaynotalwaysbeinsignificant.Thesedeviationsmaybeduetoinaccuraciesinanalyticaldesignorinreproductionsofprogrammedmotionsorbecauseofdeterministicaswellasrandomerrorsinthealgorithms,measurementdata,datatransmissionlinks,andotherfactors.Changesinthestatusoftherobotlikeinstancesofmalfunctions,failures,shiftintheframeofreference,etc.,alsoleadtouncertaintyintheoperatingconditionsoftherobot.Thepresenceofsubstantialuncertaintysignificantlyaffectstherobotinthevariousstepsofsensingthestateofatask;inadaptingtothechangesthroughthecontrolsystem;andinreasoningtoselecttheactionsneededtoachieveagoal.

Infact,itisfeltthatoneofthekeyissuesinextractingusefulknowledgefromdataisthatofcopingwithuncertaintyatalllevelsandespeciallyatthesensinglevel.Alongwiththequantityoftheobservedsensorymeasurements,thequal-ityinvolvedalsoneedtobeinvestigatedintermsoftheresidualuncertaintyitpropagatestothedesiredsensoryinformation.

Inroboticsdomain,theuncertaintyprobleminthesensoryinterpretationlevelisaverycrucialoneforspecifictaskslikerobotisedspacestructuremanipulators,robotisedsurgeryetc.wherebothhighlevelofmachineprecisionandhumanlikeprehensionareneededThekeyprobleminthesensingprocessisinmakingtheconnectionbetweenthesignaloutputsofallthesensorsandtheattributesofthethree-dimensionalworld.Oneoftherecenttrendsistosolvetheproblemthroughsensorfusionandtherearenumerousfusiontechniquescoveringaverybroadspectrumofapplicationareas[10,13].Underthebackdropofthestudyoftheseresearchworks,itwasfeltthatthereisagreatneedforevolvingageneralizedandeasilyapprehensiblesoftcomputingbasedsensorfusionstrategy(humanoidapproach)formultiplesensorysystems.Thehumanoidapproachmakesitavailableforversatileapplications.Theeasilyapprehensiblecharacterofthedevelopmentmakesitparticularlysuitableforprocessingcomplex,highlynonlinearfunctionalrelationshipsbetweenlow-levelsensorydataandhigh-levelinformation.Thefusionstrategieswouldbemostsuitabletoapplyindistributedfusionarchitecturesasitcaneffectivelyenableustominimizetheuncertaintiesatanydesiredlevel.Areviewofsomepapersonuncertaintyanalysisinthecontextofmanipulatorcontrol[4,14,16,20,23]showsthatacommonstepinvolvedinallthesesystemsistheinterpretationofidenticalinformationthathasbeenacquiredthroughmultiplesensoryunits.Thefusedinformationneedstoberepresentedwithminimizeduncertaintyandthelevelofthisminimizationdependsontaskspecificapplications.Theresearchstudydescribedinthispaperhasfocusedonthisobjectiveinthecontextofsensoryguidedroboticmanipulations.AsatokenapplicationherethechallengeofimprovingrepeatabilityofaveryordinaryRSCtyperobothasbeenundertaken.

Real-worldsystemsarestochasticinnaturehavingnonlinearityanduncertaintyintheirbehaviorsandhencehumanoidapproachofsolutionsareonlyacceptableoneinmanysuchtasks.Formultivariableinput–outputsystems,effectsofsuchnonlinearityanduncertaintyaresignificantandneedstobeaddressedproperlyinordertocontrolthemeffectively.Take,forexample,thecaseofadvancedroboticsystems(manipulatingrobotshavingredundantdegreesoffreedomormobilerobotshavingredundantsensorysystemswouldfallinthiscategory).Thesesystemsrequirevariouskindsofsensorsforrespondingintelligentlytoadynamicenvironment.Theymaybeequippedwithexternalsensorssuchasforce-torquesensors,rangesensors,proximitysensors,ultrasonicandinfraredsensors,tactilearraysandothertouchsensors,overheadoreye-in-handvisionsensors,cross-fire,overloadandslipsensingdevicesetc.Inaddition,therearealsovariousinternalstatesensorssuchasencoders,tachometers,revolversandothers.Moreisthenumberofsensors,moreisthecomputationalcomplexityforcontrollingthesystemandmoreisitsintelligencelevel.Sincerecentindustrialaswellasnon-industrialapplicationsneedroboticsystemswithhighlevelofintelligence,thecomplexityassociatedwithithastobeaddressedproperly.Forthispurpose,systemsequippedwithmultiplesensorshavingdifferentrangesofuncertaintieshasbeentakenuphereforstudy.

Informationobtainedfromdifferentsensorsareinherentlyuncertain,impreciseandinconsistent.Occasionallyitmayalsobeincompleteorpartial,spuriousorincorrectandattimes,itisoftengeographicallyorgeometricallyincompatibleamongstthedifferentsensorviews.Ourknowledgeofthespatialrelationshipsamongobjectsisalsoinherentlyuncertain.Taketheexampleofaman-madeobject.Itmaynotmatchitsgeometricmodelexactlybecauseofmanufacturingtolerance,human/machineerrorsandothernaturaluncertainties.Evenifitdoes(inmacrolevel),asensorcannotmeasurethegeometricfeaturesandlocatetheobjectexactlybecauseofmeasurementerrors.Evenifitcan(withincertainboundedtolerancelimit),arobotusingthesensormaynotmanipulatetheobjectexactlyasintended,maybebecauseofallcumulativeerrorsaddedwiththeend-effectorpositioningerrors.Theseerrorscanbereducedtoaverysignificantlevelforsometasks,byreengineeringthesolution,structuringtheworkingenvironmentandusingspeciallysuitedhighprecisionequipment-butatgreatcostoftimeandequipment[20].Analternativesolutionmaybetodevelopsensorfusionstrategiesthatcanminimizeandeliminatetheuncertaintiesofanyengineeringsystemtoadesiredlevel,atamuchlessercost,incorporatingallinherentuncertainties.InthispaperwefocusondevelopingaFDD-FFA-ANNbasedhybridtypesensorfusionstrategy.

Theorganizationofthepaperhasbeenarrangedasfollows.Section2outlinesthecomputationalstepsthroughwhichtheoverallfusionalgorithmhasbeenformulatedanddeveloped.ThesedevelopmentsandpropositionshavebeenappliedinSection3forvalidatingonsyntheticdataofanobservationmodel.Section4isdedicatedtowardsapplyingthedevelopedhybridfusionstrategiesforimprovingrepeatabilityofahardwarerobotmanipulator.TheireffectivenesshasbeenextensivelystudiedwithaspeciallyconfiguredRCStypeexperimentalrobothavingfivedegreesoffreedom.Aneuralnetworkformulationofthefusionalgorithmisalsopresented.Finally,inSection5thesignificantresultsandinferenceshavebeenlisted.

2.FormulationoftheFusionAlgorithmStructure

Thefusionalgorithmstructureconsistsofthefollowingcomputationalsteps:

(i)Theuncertaintiesintheinformationderivedthroughprocessingofmultiplenoisysensorydataarerepresentedbyindividualuncertaintyellipsoids.

(ii)Theuncertaintyellipsoidsaremergedinamannersoastominimizethevolumeofthefuseduncertaintyellipsoidbyproperassignmentofoptimalweightingmatrices.

(iii)FusionintheDifferentialDomain(FDD)hasbeendevelopedtofurtherreducetheuncertai

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 哲学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1