PKPM软件计算结果审查分析.docx

上传人:b****3 文档编号:2876795 上传时间:2022-11-16 格式:DOCX 页数:27 大小:45.05KB
下载 相关 举报
PKPM软件计算结果审查分析.docx_第1页
第1页 / 共27页
PKPM软件计算结果审查分析.docx_第2页
第2页 / 共27页
PKPM软件计算结果审查分析.docx_第3页
第3页 / 共27页
PKPM软件计算结果审查分析.docx_第4页
第4页 / 共27页
PKPM软件计算结果审查分析.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

PKPM软件计算结果审查分析.docx

《PKPM软件计算结果审查分析.docx》由会员分享,可在线阅读,更多相关《PKPM软件计算结果审查分析.docx(27页珍藏版)》请在冰豆网上搜索。

PKPM软件计算结果审查分析.docx

PKPM软件计算结果审查分析

计算机的后处理结果,即最终打印结果指内力图、配筋图和详细的内力及配筋表(按构件编号依次输出),有抗震计算时还输出中间分析结果(如自震周期、振型、位移、底部总剪力等)设计人应认真对最终打印结果进行分析,确认无误或无异常情况后再绘制施工图,必要时应将最终确定的构件编号、构件截面和配筋数量、规格绘制成简单的平面图,供校核审定和归档用。

对最终打印结果不进行分析,盲目采用其配筋直接绘制施工图的做法是不可取的,往往会造成不良的严重后果,既对工程不负责任、有不利于提高自己的设计水平。

一、        整体分析

一、        对重力荷载作用下计算结果的分析

审查重力荷载作用下的内力图是否符合受力规律;可以利用结构底层检查竖向内外力的

平衡,即底层柱、墙在重力荷载作用下的轴力之和应等于总重量;如果结构对称、荷载对称,其结构内力图必然对称,即检查其对称性。

当以上三者出现异常情况时,需要返回原始数据进行检查。

二、        对风荷载作用下计算结果的分析

审查风荷载作用下的内力图和位移是否符合受力规律;可以利用结构底层检查侧向内外力的平衡,即底层柱、墙在风荷载作用下的剪力之和应等于全部风力值(需注意局部坐标与整体坐标的方向);如果结构沿竖向的刚度变化较均匀、且风荷载沿高度的变化也较均匀时,其结构的内力和位移沿高度的变化也应该是均匀的,不应有大正大负、大出大进等突变。

三、        对水平地震荷载作用下计算结果的分析

      水平地震荷载作用下,可以利用其结果进行如同风荷载作用下的渐变性分析,但不能进行对称性分析,也不能利用结构底层进行内外力平衡的分析(因为振型组合后的内力与地震作用力不再平衡)。

水平地震荷载作用下,对其计算结果的分析重点如下。

1.        结构的自振周期

      对一般的工程,结构的自振周期在考虑折减系数后应控制在一定的范围内。

如结构的基本自振周期(即第一周期)大致为:

框架结构  T1≈(0.12~0.15)n

框-剪和框-筒结构  T1≈(0.08~0.12)n

剪力墙和筒中筒结构T1≈(0.04~0.06)n

式中,n为建筑物的总层数。

第二周期、第三周期与第一周期的关系大致为:

T2≈(1/3~1/5)T1

T3≈(1/5~1/7)T1

周期偏长,说明结构过“软”、所承担的地震剪力偏小,应考虑抗侧力构件(柱、墙)截面太小或布置不当;如周期偏短,说明结构过“刚”、所承担的地震力偏大,应考虑抗侧力构件截面太大或墙的布置太多或墙的刚度太大(宜设结构洞予以减小其刚度)。

如果抗侧力构件的截面尺寸、布置都很正常,无特殊情况而自振周期偏离太远,则应检查输入数据是否有错误。

对20层以上的高层建筑结构,如果一切正常,其基本自振周期往往在2.0~3.0之间(叫次长周期),则需要增加地震力(调整系数取1.5~1.8)重新进行计算。

    以上的判断是根据平移振动振型分解方法得出来的。

考虑弯扭耦连振动时情况要复杂得多,可以挑出与平移振动相对应的自振周期来进行上述比较,至于扭转周期的合理数值,由于缺乏经验尚难提出。

2.        各振型曲线

对于竖向刚度和质量比较均匀的结构,如果计算正常,其振型曲线应是比较连续光滑的曲线(见图5-4),不应有大进大出、大的凹凸曲折。

三、剪力墙结构的位移曲线,具有悬臂弯曲梁的特征,位移越往上增长越快,呈外弯型曲线;

四、框架结构的位移曲线,具有剪切梁的特征,位移越往上增长越慢,呈内收型曲线;

五、-剪结构及框-筒结构的位移曲线,介于以上两者之间,呈反S型曲线、中部接近为直线。

在竖向刚度较均匀的情况下,以上三种曲线均应连续光滑、无突然凹凸变化和明显的折点。

六、        层间水平位移的限值

抗震规范提出的层间弹性位移角和层间弹塑性位移角限值,实际上是控制层间水平位移不得过大,避免带来结构的P-△效应。

两个阶段的层间位移要分别满足以下要求:

ΔUe≤[θe]H

ΔUp≤[θp]H

式中  ΔUe—多于地震作用标准之产生的层间弹性位移;

      ΔUp—罕遇地震作用下按弹性分析产生的层间位移;

      [θe]—层间弹性位移角限制;

      [θp]—层间弹塑性位移角限制;

        H—第二阶段时指薄弱层(部位)的层高;

    由于规范对层间弹性位移角限制放松较多,所以第一阶段抗震的变形验算往往容易满足。

而对结构的自振周期、各振型曲线、水平位移特征和结构承受的地震力大小,规范并未提出定性或定量的要求,于是不少设计人会造成一种误解,认为满足层间弹性位移角限制即为合理的结构。

事实上,这种理解是片面的。

    因为抗震计算中,自振周期、水平位移、地震力大小均与结构的刚度有关。

结构刚度偏小时,自振周期偏长,水平地震力也偏小,水平位移也偏小,虽然位移也有可能在限制范围内,但由于承担的地震力太小,结构并不安全。

    5.地震力大小

    结构承担的地震力大小可用底部总剪力与结构总质量之比(剪质比)来衡量。

对抗侧力构件布置、截面尺寸都比较正常的结构,其剪质比在下述范围内:

  8度近震,Ⅱ类场地  Fek/G≈0.03~0.06

7度近震,Ⅱ类场地  Fek/G≈0.015~0.03

式中  Fek——结构总水平地震作用标准值

      G——结构等效总重力荷载(即结构总质量)。

层数多、刚度小的结构,其剪质比偏小,如小于上述范围或接近最小值,宜适当增大构件截面或提高结构刚度,从而增大地震力以保证结构的安全;反之,地震力过大,宜适当渐低结构刚度,以取得合理的经济技术指标。

对框剪结构,还要分析剪力墙部分的承受的地震倾覆力矩是否大于结构总地震倾覆力矩的50%,以检查其框架部分的抗震等级确定的是否合适。

宜绘出结构的整体弯矩图和剪力图,分析沿高度的受力状况。

七、        构件分析

八、        定性分析

定性分析的目的,是在整体分析的基础上进一步判断计算结果是否大体正常。

一般来说,设计较正常的结构,基本上应符合以下的规律:

九、        柱、墙的轴力设计值绝大部分为压力;

一〇、        柱的箍筋大部分为构造配筋;

一一、        墙的竖向和水平分布钢筋大部分为构造配筋;

一二、        梁基本上无超筋(连系梁除外);

一三、        柱的轴压比在限值以内,并有一定的余量;

一四、        除个别墙段外,剪力墙截面符合抗剪要求;

一五、        梁截面不满足抗剪要求或抗扭超限的情况不多。

  如计算结果出现严重错误,应考虑以下原因并采取相应的措施:

一六、        采用解密盗版程序;

一七、        几何数据或荷载数据错误;

一八、        复杂开洞剪力墙和框支剪力墙的上下连接不恰当,出现过大的拐角刚域;

一九、        对竖向体型复杂的框剪结构进行了框架剪力调整。

有的计算结果出现所谓的“异常”情况,这并非是计算错误,而是三维空间分析方法与简化计算方法的差别造成的。

例如:

二〇、        次梁端部负弯矩。

这是因为三维空间分析时考虑了次梁与主梁的共同作用,按其刚度关系、位移协调条件计算得出的,反映了次梁的实际受力状况。

而手工计算时,次梁两端按铰支处理,无负弯矩。

二一、        主梁的受扭。

按简化平面框架计算时,所有内力均在框架平面之内,所以主梁的扭矩无法考虑;实际上梁是空间受力的,次梁、悬臂梁的根部弯矩均对主梁产生扭矩。

二二、        悬臂梁的正弯矩。

手工计算悬臂梁时只有负弯矩;而空间计算时,当上下几层悬臂梁端有小柱连接而构成小框架时,必然出现悬臂梁的正弯矩。

二三、        柱的轴力。

手工计算时,柱的轴力是按楼面荷载的面积大小求得的;而空间分析时,由于梁的刚度影响,柱的轴力要在各柱之间重新分配,并不等于前者计算得到的轴力。

一般的计算结果表明,中柱重新分配的轴力要比按荷载面积求得的轴力小,边、角柱重新分配的轴力要大于按荷载面积求得的轴力。

二四、        临近剪力墙的框架柱轴力。

考虑框剪结构的空间整体作用后,框架柱的一部分轴力邀传递到邻近的剪力墙上,因此该柱的轴力就会变小。

柱靠墙越近,梁的刚度越大,这一现象越明显;而采用简化的平面框架分析方法时,各片框架是独立计算的,框架柱不存在轴力减小的问题。

定量分析

   定量分析的目的,是为了判断构件的配筋是否合理,有无钢筋超限情况,是否有遗留问题需要处理。

(详见第五节构件配筋的确定)

二五、        遗留问题的处理

二六、        所有梁的正负配筋必须考虑活荷载最不利分布的影响,乘以1.2的增大系数(软件如已考虑其影响着除外)。

地震区框架梁的负钢筋可不再增加。

二七、        对空间分析的平面交叉梁,其主梁正钢筋应在乘以1.2~1.5的增大系数(不含上述活荷载不利分布影响的增大系数);其次梁的负钢筋不得小于次梁的正钢筋。

二八、        凡净跨〉7米的大梁,一般要进行挠度和裂缝宽度的计算并满足规范的有关规定;净跨≤7米的大梁,可不进行挠度和裂缝宽度的计算,但仍应酌情增加其配筋量。

二九、        悬挑梁的根部钢筋,如悬臂端构造柱按不传力计算,其负钢筋应乘以1.2~1.8的增大系数(下层取1.8,以上递减);如悬臂端构造柱按传力计算时,应配置正钢筋。

三〇、        任何三维空间程序都不可能是包罗万象的,凡程序未加考虑的构件和部位且影响安全时均应进行补充计算(采用小构件计算程序或手算)如折线式楼梯、螺旋式楼梯、圆弧梁、阳台、雨篷、挑檐、井式楼盖、转换层大梁、局部受压、节点核心区抗剪、牛腿等。

三一、        柱下独立基础、条形基础、十字交叉梁基础、筏形基础、箱形基础和人防地下室都有相应的程序可供采用。

但取上部结构传来的内力时,应考虑下述问题:

三二、        基础顶面上所受的内力(轴力、弯矩和剪力)应取同一种工况作用的组合内力进行设计,再取另一种(或几种)工况作用的组合内力进行验算,按最不利的结果确定基础构件的截面和配筋。

不要误用最大轴力、最大弯矩、最大剪力的打印结果进行设计,因为它是不同工况产生的最大内力,不可能同时出现。

三三、        直接按荷载面积求得的基础顶面(即柱脚)轴力来进行基础设计,对边角柱是不安全的。

三四、        直接按剪力墙荷载面积求得的墙基础顶面(即墙底部)的轴力来进行基础设计,也是不安全的,应适当增大墙底部的轴力。

三五、        主次梁相交处的无柱连接点,对次梁端部负钢筋不应少于跨中正钢筋,对主梁不应出现跨中负钢筋。

三六、        框架梁的配筋

三七、        梁的纵向钢筋

三八、        梁应处于单筋受力状态。

如果计算结果为双筋受力状态,应加大梁截面尺寸,按其内力重新计算求得配筋面积。

三九、        梁不设弯起钢筋,应为弯起钢筋起不到双向抗剪的作用,从而不能保证水平地震荷载作用下梁端塑性铰区段的转动能力。

四〇、        梁的纵向受拉钢筋的最小配筋率:

一级抗震支座为0。

4%、跨中为0。

3%;抗震二级时支座为0。

3%、跨中为0。

25%;抗震三、四级时,支座为0.25%,跨中为0.2%。

四一、        梁端纵向受拉钢筋的配筋率不应大于2.5%,且混凝土受压区高度与有效高度之比,抗震一级不应大于0.25,抗震二、三级不应大于0。

35%。

四二、        受牛纵向钢筋应沿梁截面周边均匀布置,一般可在上下两边各配置15%~20%,左右两边各配置35%~30%。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1