巨线粒体DNAND6基因克隆及多态性分析.docx

上传人:b****8 文档编号:28505070 上传时间:2023-07-16 格式:DOCX 页数:7 大小:20.92KB
下载 相关 举报
巨线粒体DNAND6基因克隆及多态性分析.docx_第1页
第1页 / 共7页
巨线粒体DNAND6基因克隆及多态性分析.docx_第2页
第2页 / 共7页
巨线粒体DNAND6基因克隆及多态性分析.docx_第3页
第3页 / 共7页
巨线粒体DNAND6基因克隆及多态性分析.docx_第4页
第4页 / 共7页
巨线粒体DNAND6基因克隆及多态性分析.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

巨线粒体DNAND6基因克隆及多态性分析.docx

《巨线粒体DNAND6基因克隆及多态性分析.docx》由会员分享,可在线阅读,更多相关《巨线粒体DNAND6基因克隆及多态性分析.docx(7页珍藏版)》请在冰豆网上搜索。

巨线粒体DNAND6基因克隆及多态性分析.docx

巨线粒体DNAND6基因克隆及多态性分析

巨线粒体DNAND6基因克隆及多态性分析

  摘要:

利用GenBank数据库中科鱼线粒体ND6基因序列保守区设计引物,采用PCR技术克隆并测序,共得到12尾巨ND6基因全序列。

用DNAMAN5.0软件比对序列,MEGA5.0软件分析科不同鱼类的进化关系,结果表明:

巨ND6基因序列全长为516bp,碱基含量分别为14.20%、34.50%、40.20%、11.00%,其中“A+T”含量(54.40%)高于“G+C”含量(45.50%),存在4个单倍型,发生3次颠换;12个个体4个单倍型间的平均相对遗传距离为0.003;将巨与其他14种鱼类的ND6基因用Neighbore-Joining(NJ)法构建系统发育树,发现巨单独聚为1支。

研究将为今后鱼类线粒体基因组的研究提供科学依据。

  关键词:

巨;线粒体;ND6基因;多态性;系统进化

  中图分类号:

S917.4

  文献标志码:

A

  文章编号:

1002-1302(2016)04-0062-04

  巨(BagariusyarrelliSykes)是云南省特有鱼类,主要分布于元江、澜沧江、怒江流域,属于鲇形目(Siluriforme)科(Sisoridae)属(Bagarius)。

巨个体很大,体质量约50kg,全身无鳞,皮肤表面布满细密的微小颗粒物,使其皮肤极为粗糙,此外其体表无黏液,身体背面颜色为灰黄色,腹面为白色,肌肉为黄色,所以又称“黄鱼”[1]。

巨为底栖肉食性鱼类,具有口宽、上下颌都有齿带、牙齿呈锥形且排列紧密、鳃耙粗短、胃大、肠短等特点,主要食物为鱼类、虾、泥鳅、水生昆虫[2]。

田树魁等通过比较巨、叉尾鲇、斑点叉尾3种鱼肌肉中常规营养成分和氨基酸含量,发现巨肌肉中蛋白质、粗脂肪和必需氨基酸的含量比常规鱼类高,是一种具有较高营养价值的有待驯养开发的野生鱼类[3]。

杜民等研究表明,野生巨具有较高的遗传多样性[4]。

但是由于地理环境的改变和人为因素的影响,野生可利用的巨资源越来越少。

为了保护该鱼类,薛晨江等开展了巨的人工驯养,并取得初步成功[5]。

  鱼类线粒体DNA(mitochondrialDNA,mtDNA)是细胞核外(细胞质中)具有转录、自主复制和翻译能力的共价闭合环状双链DNA[6]。

鱼类的mtDNA主要包括37个基因(22个tRNA编码基因、13个疏水蛋白基因、2个rRNA基因);其中13个疏水蛋白基因编码的多肽中包含了7个氢化辅酶Ⅰ(nicotinamideadeninediuncleotidehydrogen,NADH)脱氢酶的亚单位(ND1、ND2、ND3、ND4、ND4L、ND5、ND6)。

ND6蛋白编码基因位于L链上,处于细胞色素b与ND4之间的连续区域,是线粒体内膜呼吸链的重要组成成分[7]。

在氢化辅酶中,由于ND6基因序列不易发生变异,进化速度一般,且基因片段不长,因此常用来研究物种的遗传多样性、种群之间的亲缘关系以及系统进化关系[8]。

方月琴等用复合扩增体系,选择线粒体ND6基因进行种属鉴定,结果表明,该方法可以将13种不同的动物区分开来[9]。

也有研究表明,ND6基因与人类疾病帕金森氏症等发生有关[10],ND6基因还被用于研究鸟类的亲缘关系[11],但是大多应用于鱼类群体和亚种间的遗传变异研究[12-13]。

对巨的线粒体ND6基因全序列进行检测分析,进而分析巨遗传结构、变异及与其他物种之间的同源差异,可为今后巨鱼种研究提供一定的试验数据与理论依据。

  1材料与方法

  1.1试验材料

  本研究采用的12尾巨采自云南省河口县。

剪取肌肉组织放于1.5mLEP管中,贴上对应标签,再加入无水乙醇,于4℃保存备用。

  1.2试验方法

  1.2.1基因组DNA的提取及多态性引物筛选DNA的提取参考Sambrook等的酚/氯仿抽提法[14]。

用凝胶成像系统观察、照相记录后,将提取的DNA贮存在-20℃冰箱中备用。

  根据GenBank数据库中已公布的科巨鱼线粒体基因组ND6基因序列(登录号:

NC_021606,JQ026260),用PrimerPremier5软件设计简并引物:

上游引物:

5′-GCACCTCAGAAKGATATTTGWCCYC-3′;下游引物:

3′-TYTAAACAGCCCGAAGCGCMC-5′,在PCR扩增仪上进行扩增,反应体系见表1。

  PCR反应条件:

94℃4min;94℃30s,54℃50s,72℃90s,30个循环;72℃延伸6min;4℃保存。

PCR产物用1%琼脂糖凝胶在120V电压下电泳35min,最后通过凝胶成像系统得到PCR产物条带并照相。

  检测后的PCR产物用1.5%琼脂糖凝胶电泳,在紫外分析仪下切下目的片段,用DNA凝胶回收试剂盒(天根生物科技有限公司)进行回收纯化,具体步骤参照回收试剂盒说明书进行。

  1.2.2目的DNA片段的连接与转化用pMD18-T载体与目的DNA进行连接、转化,具体步骤参照载体连接试剂盒说明书进行,用LB培养基进行扩大养后用M13进行阳性克隆筛选,送交南京金斯瑞科技生物公司测序。

  1.3数据分析

  利用DNAMAN5.0软件将测得的巨线粒体ND6基因部分序列与参照物种ND6基因部分序列进行比对。

利用MEGA5.0软件中的Kimura2-parameter方法计算遗传距离,采用邻接法(Neighbore-Joining,NJ)中的MaximumCompositeLikelihood法构建系统发育树,通过自举检验(Bootstrap)获得系统分支的置信度(重复1000次)。

  2结果与分析

  2.1DNA提取

  从巨鱼鳍条或肌肉提取DNA,结果见图1。

可以看出,DNA条带清晰。

  2.2引物退火温度的优化

  用设计的Bayam18引物退火温度的±10℃范围进行梯度PCR(图2),所用marker为BM2000,Bayam18引物的退火温度梯度见表2。

由图2可知,Bayam18号引物能扩增出条带的温度为55、55.6、56.4、57.5、59.2、60.7、61.9℃,根据条带明亮度,初步确定Bayam18引物最适的退火温度。

  2.3扩增产物与DNA回收

  利用凝胶回收试剂盒对PCR产物(图3)进行回收,回收产物(图4)于-20℃保存。

  2.4菌液退火温度优化

  通过梯度PCR优化M13通用引物的退火温度(图5)。

M13通用引物序列见表3,退火温度梯度见表4。

由图5可知,M13通用引物在每个泳道都扩增出了明亮条带。

  2.5巨鱼ND6基因序列的碱基含量

  本试验中,利用下载序列通过DNAMAN5.0软件对比排位,得到ND6基因片段长度516bp,12条序列中发现4个单倍型,其中6号、7号、11号个体序列相同,为1#单倍型;1号、3号、4号、5号、8号、9号、12号个体序列相同,为2#单倍型;10号个体为3#单倍型;2号个体为4#单倍型。

采用MEGA5.0软件计算它们的碱基组成(表5),可以得出T、C、A、G4种碱基含量分别为14.10%、34.80%、40.10%、11.00%,其中“A+T”含量(54.20%)高于“G+C”含量(45.80%)。

  2.6巨鱼ND6基因12个个体的相对遗传距离

  用MEGA5.0软件中的双参数法,通过转换加颠换、转换比颠换分别计算12个个体之间的相对遗传距离[15],详见表6。

由表6可知,12个个体的4个单倍型之间的差异(转换加颠换)为0.002~0.004。

  2.7基于ND6基因构建系统发育树

  将巨鱼ND6基因与其他14物种(表7)进行比对,用MEGA5.0软件构建系统发育树[16-17],从图6可以看出,系统发育树分为两大支,巨单独聚为1支。

  3讨论与分析

  本试验通过从GenBank数据库中查询已公布的科巨线粒体基因组中ND6基因序列保守区设计引物,采用PCR反应扩增、克隆及测序巨ND6基因,共得到12条ND6基因全序列。

对巨线粒体ND6基因序列进行研究,得到ND6基因全序列长516bp。

  利用MEGA5.0软件分析对巨鱼线粒体ND6基因12个个体进行分析,得到T、C、A、G这4种碱基含量分别为14.10%、34.80%、40.10%、11.00%,其中“A+T”含量(54.20%)高于“G+C”含量(45.80%),说明ND6基因序列中富含碱基A、T。

共发现4个单倍型,3个变异位点,都为单突变位点,表明ND6基因序列多态性贫乏,序列之间差异不大,这与赖瑞芳等比较鲂属鱼类线粒体基因组,研究鲂属鱼类系统发育的结果[18]是一致的。

ND6基因序列共发生3次颠换,表明本研究的4个单倍型的ND6基因核苷酸变异类型以

  颠换为主。

12个个体的4个单倍型之间平均相对遗传距离为0.003,转换和颠换的比值为0.667,表明这12个个体之间亲缘性近,ND6基因序列变异并不显著,这与于美玲等对科鱼类系统发育关系的研究结果[19]一致。

  此外,由系统发育树可知,系统发育树分为两大支,其中巨单独聚成1支,置信值为100%,表明与其他14种科鱼亲缘性远。

另一支又分为2支,分别是细尾、长丝黑先聚为1支,黄石爬、黑斑原先聚为1支后,这4个种类进而聚为一个大的分支后与本研究的4个巨聚在一起。

大鳍异齿和中华先聚为1支,二者与三线纹胸聚在一起后与中华纹胸聚为1支,再与藏聚在一起,然后与黄斑褶聚为较大的分支。

巨单独聚成1支,这与形态学分类结果与基于细胞色素b(Cytochromeb)、rpS7基因研究的遗传进化是一致的[20-21]。

本研究通过研究巨鱼ND6基因序列多态性,可为以后研究巨与其他鱼类的亲缘性、系统进化等研究提供科学依据。

  参考文献:

  [1]田树魁,薛晨江,冷云,等.巨的生物学特性初步研究[J].水生态学杂志,2009,30(3):

115-117.

  [2]冷云,田树魁,刘跃天,等.巨食性初步研究[J].现代农业科技,2011,37(19):

329-330.

  [3]田树魁,易勇,薛晨江,等.野生巨肌肉营养成分测定和分析[J].淡水渔业,2009,39(3):

73-76.

  [4]杜民,牛宝珍,罗彩艳,等.巨野生群体遗传多样性的RAPD分析[J].淡水渔业,2015,45

(1):

15-19,24.

  [5]薛晨江,张正雄,马建颜,等.巨人工繁殖初报与胚胎发育观察[J].水生态学杂志,2012,33(5):

54-56.

  [6]吕国庆,李思发.鱼类线粒体DNA多态研究和应用进展[J].中国水产科学,1998,5(3):

95-104.

  [7]陈四海,区又君,李加儿.鱼类线粒体DNA及其研究进展[J].生物技术通报,2011,27(3):

13-20.

  [8]海汀,柴志欣,张成福,等.西藏牦牛mtDNAND6遗传多样性及系统进化分析[J].家畜生态学报,2014,35(11):

11-17.

  [9]方月琴,顾准,侯一平.线粒体基因种属鉴定复合扩增体系[J].盐城工学院学报:

自然科学版,2012,25

(1):

19-24.

  [10]PiccoliC,RipoliM,QuaratoG,etal.CoexistenceofmutationsinPINK1andmitochondrialDNAinearlyonsetParkinsonism[J].JournalofMedicalGenetics,2008,45(9):

596-602.  [11]陈晓芳,王翔,袁晓东,等.?

a形目15种鸟类线粒体ND6基因序列差异及其系统进化关系[J].动物学报,2003,49

(1):

61-66.

  [12]袁娟,张其中,罗芬.鱼类线粒体DNA及其在分子群体遗传研究中的应用[J].生态科学,2008,27(4):

272-276.

  [13]郭新红,刘少军,刘巧.鱼类线粒体DNA研究新进展[J].遗传学报,2004,31(9):

983-1000.

  [14]SambrooJ,FitchE,ManiatisT.Molecularcloning:

alaboratorymanual[M].2nded.NewYork:

ColdSpringHarborLaboratoryPress,1989:

1024-1031.

  [15]TamuraK,NeiM,KumarS.Prospectsforinferringverylargephylogeniesbyusingtheneighbor-joiningmethod[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2004,101(30):

11030-11035.

  [16]SaitouN,NeiM.Theneighbor-joiningmethod:

anewmethodforreconstructingphylogenetictrees[J].MolecularBiologyandEvolution,1987,4(4):

406-425.

  [17]DopazoJ.Estimatingerrorsandconfidenceintervalsforbranchlengthsinphylogenetictreesbyabootstrapapproach[J].JournalofMolecularEvolution,1994,38(3):

300-304.

  [18]赖瑞芳,张秀杰,李艳和,等.鲂属鱼类线粒体基因组的比较及其系统发育分析[J].水产学报,2014,38

(1):

1-14.

  [19]于美玲,何舜平.科鱼类系统发育关系分析及其分歧时间估算[J].中国科学:

生命科学,2012,42(4):

277-285.

  [20]周伟,李旭,杨颖.中国科群系统发育与地理分布格局研究进展[J].动物学研究,2005,26(6):

673-679.

  [21]李旭.中国鲇形目科群鱼类的系统发育及生物地理学分析[D].昆明:

西南林业大学,2006.徐佳杰,姜波,朱建一,等.红毛菜28SrDNA和IGS序列分析及系统发育[J].江苏农业科学,2016,44(4):

66-69.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 纺织轻工业

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1