一种简单有效的限流保护电路.docx

上传人:b****8 文档编号:27859114 上传时间:2023-07-05 格式:DOCX 页数:9 大小:153.23KB
下载 相关 举报
一种简单有效的限流保护电路.docx_第1页
第1页 / 共9页
一种简单有效的限流保护电路.docx_第2页
第2页 / 共9页
一种简单有效的限流保护电路.docx_第3页
第3页 / 共9页
一种简单有效的限流保护电路.docx_第4页
第4页 / 共9页
一种简单有效的限流保护电路.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

一种简单有效的限流保护电路.docx

《一种简单有效的限流保护电路.docx》由会员分享,可在线阅读,更多相关《一种简单有效的限流保护电路.docx(9页珍藏版)》请在冰豆网上搜索。

一种简单有效的限流保护电路.docx

一种简单有效的限流保护电路

一种简单有效的限流保护电路

D

也线性上升,va也随之上升,此时间段va-vb

   阶段2(t1-t2)   t1时刻va-vb>VD1,二极管D1开始导通,vb随着va线性上升。

   阶段3(t2-t3)   t2时刻vg=0,S关断,is=0,则va=0,二极管D1关断,vb通过R3放电,直到下一周期的到来。

   从图3中可以看到vb是一个波动的电压,但是在实际电路中,由于图1中时间常数R3C1取得比较大,vb的波动很小,可以近似为一个直流电压。

图3   正激变换器限流保护电路理论波形

   根据假定3),电感电流的波动较小,即va的斜率比较小,另外VD1较小(是因为流过二极管的电流很小,实验中采用1N5819实测值为200mV左右),则vb的值近似地等于vaD(va在DT时间内的平均值)。

从图3中可以看到VaD与输出电流io成正比,也即vb近似与输出电流io成正比,假定vb=KioK为常数。

   我们知道,当限流保护电路工作并达到稳定状态时,vb=vc=vref=Kio,此时输出电流io即为限流保护值。

因此,通过改变参考电压Vref即可改变限流保护值。

2   限流保护点补偿电路

   在输出电压一定,输入电压为宽范围时,由于占空比随着输入电压的变化而变化,应用于不同的拓扑,限流保护电路的工作情况会有所不同,下面以正激和反激式变换器为例进行理论分析。

   在分析之前先作一个假定:

由前面分析已经知道vb的值近似等于vaD,在此令vb=vaD,并且在以下的波形图中都以直流电压出现。

2.1   正激变换器

   根据限流保护电路的工作原理及以上假定,则有

   vb=vaD=isDn2R=

   

(1)

   io=

   

(2)

式中:

isD为is在DT时间内的平均值;

     n1为变压器原副边匝数比;

     n2为电流互感器原副边匝数比;

     iLo为电感电流一个周期内的平均值。

当限流保护电路工作并达到稳定状态时,vb=vc=Vref,io即为限流保护值iomax。

   iomax=

   (3)

   从式(3)中可以看到,n1,n2,R为常数,在Vref一定的条件下,iomax是个恒定值,并不随输入电压的变化而变化。

2.2   反激变换器

   反激变换器如图4所示,同样有

   vb=vaD=isDn2R=iLon2R=

   (4)

   io=

   (5)

式中:

iLo为电感电流一个周期内的平均值(反激变换器的电感即变压器原边励磁电感);

     iDD′为流过副边二极管D的电流iD在(1-D)T时间内的平均值。

图4   反激变换器

又有   Vout=

   (6)

推出   D=

   (7)

将式(7)代入式(5)得

   io=

   (8)

   当限流保护电路工作并达到稳定状态时,vb=vc=Vref,io即为限流保护值iomax。

   iomax=

   (9)

   从式(9)中可以看到,n1,n2,R为常数,在Vout及Vref一定的条件下,iomax随着Vin的增大而增大。

   比较式

(1)和式(4)可以发现:

在vb一定时(即限流保护电路工作并达到稳定状态时参考电压Vref一定),不管是正激变换器还是反激变换器,电感电流平均值iLo都不随输入电压的变化而变化。

造成两者区别的关键在于:

正激变换器的输出电流是连续的而反激变换器的输出电流是断续的。

对于正激变换器来说io=iLo,而对于反激变换器来说io=n1(1-D)iLo。

由于在输出电压一定时,占空比D会随着输入电压的变化而变化,因此,反激变换器的限流值将会随着输入电压的变化而变化。

   图5和图6分别给出了假定io不变时,不同输入电压正激变换器和反激变换器限流保护电路的理论波形,图中输入电压Vin2>Vin1。

图5   不同输入电压正激变换器限流保护电路理论波形

图6   不同输入电压反激变换器限流保护电路理论波形

   根据以上分析可知,当参考电压恒定时,正激变换器限流值也是恒定的,跟输入电压没有关系。

这里需要指出的是:

以上的理论分析是基于vb=vaD的假定,当输入电压变化时,vb=vaD的近似程度也会不同,所以,实际上正激变换器限流值

   也会随着输入电压的变化而变化,只是波动很小,这个在之后的实验结果中可以看到。

   反激变换器限流值随着输入电压的变化而有较大变化,因此,需要采用一定的措施来进行补偿,使限流值的变化在可以接受的范围之内。

从式(9)中可知限流值随着输入电压的增大而增大,也即假定限流值不变的话,vb随着输入电压的增大而减少。

因此,需要对vb作一定的补偿,补偿电压应随着输入电压的增大而增大,从而来抵消vb的变化。

用输入电压来作为补偿信号是一种可以选用的方法。

输入电压通过一个电阻接到图1的C点,如图4虚线所示,此时限流保护电路工作并达到稳定状态时,vc不再等于vb,而是

   vc=vb+

   vc的第一部分vb随着Vin的增大而减小,而第二部分随着Vin的增大而增大,从而达到抵消的目的。

R4的取值理论上可以根据最大输入电压和最小输入电压时vc相等来求得(R2取值已定的情况下),再在具体实验中进行微调,以求得到最小的限流值变化范围。

3   实验结果

   一个带有本文所提出的限流保护电路的正激变换器,和一个带有限流保护电路和补偿电路的反激变换器验证了上述的理论结果,其电路参数如表1所列。

表1   电路参数

变换器

Forward

Flyback

输入电压/V

9~15

9~15

输出电压/V

24

5

输出功率/W

240

35

工作频率/kHz

100

100

   图7给出的是输入电压12V,电路满载工作时的限流保护电路工作波形,从图中可以看到,它的实际电路波形跟理论波形是一致的。

   图8及图9分别给出了输入电压分别为9V,12V,15V,电路满载工作时正激变换器和反激变换器限流保护电路va的波形,与图5和图6的理论波形也是一致的。

图7   正激变换器限流保护电路实验波形(Vin=12V)

图8   不同输入电压时正激变换器va波形

图9   不同输入电压时反激变换器va波形

 

   图10则给出了正激,反激补偿前和反激补偿后实测限流值随输入电压变化的曲线。

正激变换器限流值随着输入电压变化基本不变,而反激变换器限流值在补偿前随输入电压的变化有较大的波动。

但是,在加了补偿电路之后反激变换器限流值的稳定性有了明显的改善,证明了该补偿电路的有效性。

图10   输入电压变化时限流值波动曲线

4   结语

   本文提出的限流保护电路具有简单有效的特点,克服了电路工作电流比较大时电阻取样消耗功率大和霍尔元件取样体积大,成本高的缺点。

   本文分析了该限流保护电路应用于正激和反激变换器时的工作情况,并且提出了应用于宽范围反激变换器时的一个简单有效的补偿电路。

对于别的拓扑需不需要附加补偿电路,读者可根据输出电流是连续还是断续自行分析。

 

作者简介

   陈世杰,男,硕士研究生,现从事电力电子电路拓扑的研究。

   顾亦磊,男,博士研究生,现从事电力电子电路拓扑和电源系统集成的研究。

   吕征宇,男,博士,教授,博士生导师,现从事电力电子中的电磁兼容,智能控制,功率变换器和电力电子器件等方面研究。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1