移动通信中的先进信号处理技术综述.docx

上传人:b****8 文档编号:27816507 上传时间:2023-07-05 格式:DOCX 页数:21 大小:256.05KB
下载 相关 举报
移动通信中的先进信号处理技术综述.docx_第1页
第1页 / 共21页
移动通信中的先进信号处理技术综述.docx_第2页
第2页 / 共21页
移动通信中的先进信号处理技术综述.docx_第3页
第3页 / 共21页
移动通信中的先进信号处理技术综述.docx_第4页
第4页 / 共21页
移动通信中的先进信号处理技术综述.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

移动通信中的先进信号处理技术综述.docx

《移动通信中的先进信号处理技术综述.docx》由会员分享,可在线阅读,更多相关《移动通信中的先进信号处理技术综述.docx(21页珍藏版)》请在冰豆网上搜索。

移动通信中的先进信号处理技术综述.docx

移动通信中的先进信号处理技术综述

CDMA

课程设计

《报告》

1.概述..................................................................................................1

2.多址技术..........................................................................................1

2.1频分多址...................................................................................2

2.2时分多址...................................................................................2

2.3码分多址...................................................................................3

3.多用户检测.......................................................................................3

4.联合检测..........................................................................................10

5.联合发送...........................................................................................15

6.小结...................................................................................................15

7.参考文献...........................................................................................17

一、概述

   与传统的频分多址(FDMA:

Frequency-DivisionMultipleAccess)、时分多址(TDMA:

time-DivisionMultipleAccess)系统相比,码分多址(CDMA:

Code-divisionMultipleAccess)系统具有频谱效率高、软容量、保密性好、易于无缝切换和宏分集等优点,但同时也要克服多址干扰(MAI)和远近效应这两个严重影响系统容量的问题。

在CDMA系统中,依靠不同的地址码来区分不同用户,如果不同的地址码之间是完全正交的,则各个用户之间将没有干扰存在。

但不幸的是,在CDMA系统中,由于多个用户的随机接入以及无线信道时变特性对用户地址码之间互相关性的破坏,用户地址码之间不能保证完全正交,从而引起多址干扰。

随着用户数的增加,这种干扰将越来越严重。

同时,无线电信号经过移动信道时会受到来自不同途径的衰落,由于用户距离基站的距离不同,因而衰减也不同。

如果发射台以相同的功率发射,将会导致基站接近移动台的信号比接收远站点移动台信号强得多,使得相对较弱的用户信号得不到正常的检测,这就是远近效应问题。

现有系统都是靠严格的功率控制来解决这一问题的,但精确的功率控制非常复杂,费用较高。

传统的CDMA信号检测技术根据直接序列扩频理论对基带接收信号进行地址码相关计算,独立处理每个用户的信号,因此称为相关检测,它不具备抗多址干扰和远近效应的能力。

多用户检测是近几十年来在相关检测基础上发展起来的一种有效的抗干扰措施,是CDMA通信系统中抗干扰的关键技术。

它利用多址干扰的各种可知信息对目标用户的信号进行联合检测,从而具有较好的抗多址干扰能力,可以更加有效地利用频谱资源,显著提高系统容量,降低系统对功率控制的要求。

多用户检测的额思想最早可以追溯到1983年,1986年,S.Verdo提出多址干扰是具有一定结构的有效信息。

他以匹配滤波器加维特比算法实现了最大似然序列检测,从理论上证明了采用最大四然效应检测可以逼近单用户接收性能,并能有效克服远近效应,大大提高系统容量,至此开始了对多用户检测技术的复杂太高无法实现。

因此在以后的十几年里,出现许多次优的用户检测方案,主要分为线性多用户检测和干扰删除多用户检测两方面。

目前,这两种方式已成为多用户检测技术研究的主要方向。

2、多址技术

多址技术分为频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)。

频分多址是以不同的频率信道实现通信。

时分多址是以不同的时隙实现通信。

码分多址是以不同的代码序列来实现通信的。

1.频分多址(FDMA)

 FDMA将整个可利用的无线频带划分成互不交叠的子频带,每一个子频带分配给一个特定的用户,该用户在通信过程中长期占用该子频带直到通信结束。

因此,FDMA方式下无线行信道的共享通过为不同用户分配不同频带来完成。

FDMA是第一代模拟蜂窝移动通信系统广泛采用的方式,如TACS系统频道间隔为25KHz等。

采用FDMA方式主要有如下特点:

(1)每个频道只传输一路业务信息,因此实质上是单路单载波传输;

(2)

信号连续传输,各多址信道在时间和空间重叠,频率分割;

(3)多频道信号互调干扰严重;

(4)频分多址就只是分裂信道以提高容量,因此频率利用率低,系统容量小;

(5)系统可扩展性以及对新技术的适用性差,需要改变和增加射频硬件和频率重用设计,产生一系列复杂问题。

利用FDMA技术的模拟移动通信系统由于系统容量、抗干扰性和保密性无法满足日益增长的移动业务需要已经被淘汰。

2.时分多址(TDMA)

时分多址是把时间分割成周期性的帧(Frame)每一个帧再分割成若干个时隙向基站发送信号,在满足定时和同步的条件下,基站可以分别在各时隙中接收到各移动终端的信号而不混扰。

同时,基站发向多个移动终端的信号都按顺序安排在予定的时隙中传输,各移动终端只要在指定的时隙内接收,就能在合路的信号中把发给它的信号区分并接收下来。

 时分多址(TDMA)的N个时隙(信道)在时间轴上互不重叠,应该满足时间正交性:

式中,ΔTi为时隙长度;Xi和Xj分别表示第i个利第j个时隙(信道)发送的突发信号,接收端的TDMA定时单元根据系统定时信号实时控制时间闸门,选择出所需信道(时隙)所传送的突发信号。

时分多址只能用于数字通信系统。

模拟话音必须先进行模数变换(数字语音编码)及成帧处理,然后以突发信号的形式发射出去。

3.码分多址(CDMA)

码分多址(CDMA,Code-DivisionMultipleAccess)通信系统中,不同用户传输信息所用的信号不是靠频率不同或时隙不同来区分,而是用各自不同的编码序列来区分码分多址,或者说,靠信号的不同波形来区分。

如果从频域或时域来观察,多个CDMA信号是互相重叠的。

接收机用相关器可以在多个CDMA信号中选出其中使用预定码型的信号。

其它使用不同码型的信号因为和接收机本地产生的码型不同而不能被解调。

它们的存在类似于在信道中引入了噪声和干扰,通常称之为多址干扰。

在CDMA蜂窝通信系统中,用户之间的信息传输是由基站进行转发和控制的。

为了实现双工通信,正向传输和反向传输各使用一个频率,即通常所谓的频分双工。

无论正向传输或反向传输,除去传输业务信息外,还必须传送相应的控制信息。

为了传送不同的信息,需要设置相应的信道。

但是,CDMA通信系统既不分频道又不分时隙,无论传送何种信息的信道都靠采用不同的码型来区分。

类似的信道属于逻辑信道,这些逻辑信道无论从频域或者时域来看都是相互重叠的,或者说它们均占用相同的频段和时间。

1.CDMA是扩频通信的一种,他具有扩频通信的以下特点:

⑴抗干扰能力强。

这是扩频通信的基本特点,是所有通信方式无法比拟的。

⑵宽带传输,抗衰落能力强。

⑶由于采用宽带传输,在信道中传输的有用信号的功率比干扰信号的功率低得多,因此信号好像隐蔽在噪声中;即功率话密度比较低,有利于信号隐蔽。

⑷利用扩频码的相关性来获取用户的信息,抗截获的能力强。

三.多用户检测

在移动通信的发展过程中,无线环境中的信号衰落与相互干扰一直是影响移动通信质量的重要因素之一。

为对抗衰落与干扰,几十年来人们研究并应用了多种技术,如GSM的自适应均衡、IS-95CDMA的RAKE接收机等。

多用户检测技术(MultiuserDetection,MUD)是根据经典信息论的最佳联合检测理论提出的一种有效对抗多址干扰的先进技术。

从1979年K.Schneider提出联合检测的概念,特别是1986年S.Verdu提出最优多用户检测算法以来,经过20多年的理论研究,并结合码分多址移动通信系统的实践与发展,多用户检测逐渐成熟。

目前,3G移动通信标准中的WCDMA、cdma2000和TD-SCDMA均将多用户检测纳入其技术演进路线,并已进入实际应用阶段。

3.1、多用户检测原理

3G移动通信的主要制式多以码分多址(CDMA)技术为基础,CDMA系统的最大特点是自身为干扰受限系统。

CDMA系统中的干扰从干扰源类型角度可分为加性高斯白噪声(AWGN)、多径衰落干扰(MultipathInterference)与多址衰落干扰(Multi-AccessInterference)等。

从干扰源位置角度可划分为小区内干扰与小区间干扰。

仅考虑小区内干扰时,在小区内用户较多时,可认为多址干扰是最主要的干扰,其次是多径干扰,最后是AWGN干扰。

CDMA利用多用户间正交性以及扩频与解扩的相关技术可以对抗AWGN干扰,利用RAKE接收机可以对抗多径干扰。

研究表明,多用户检测可以对抗多址干扰。

传统CDMA检测将所有多址干扰的伪随机码信号全部等效为无用白噪声,通过相干算法将其删除,仅通过扩频码设计、功率控制、调整天线等方法来降低干扰。

在多用户检测理论中,通过充分利用多址干扰中的先验信息,将所有用户信号的分离看作一个统一过程,可以进一步消除干扰的影响,提高系统性能。

3.2多用户检测分类与算法研究

CDMA系统中多个用户信号在时域和频域上混叠,接收端需用一定的信号分离方法分离各个用户信号,其方式有单用户检测和多用户检测两种。

现代数字信号处理表明:

CDMA系统中,多用户检测的效果要优于单用户检测。

多用户检测的基本原理是通过发送已知序列对信道进行估计,并测量各个用户扩频码间的非正交性,用矩阵求逆或迭代法消除用户之间的干扰,进而正确恢复所有用户数据。

3.2.1最优多用户检测

S.Verdu最早提出了最优多用户检测,可分为同步最优多用户检测与异步最优多用户检测。

2.1.1同步最优多用户检测

具有K个用户的同步CDMA系统,当不考虑多径干扰时,接收信号可表示为

(1)

式中T为符号周期;

为第

个用户的扩频码,且具有归一化能量

为第

个用户的接收信号幅度;

为第

个用户的发送比特信息;

为均值为0,方差为

的AWGN随机过程。

多用户检测器包括

个匹配滤波器,每个匹配滤波器的采样输出信号为

(2)

定义两扩频码间的周期互相关系数为

(3)

代入

(2)式,得

(4)

式中

是高斯随机变量。

同步CDMA系统的接收信号可表示为

(5)

式中

是归一化互相关系数矩阵;

是高斯噪声矢量,其均值为0,

协方差矩阵为

多用户检测的目的是联合解调发送比特矢量

,使联合似然概率

最大。

此时要求满足以下联合最优检测准则:

(6)

理论分析表明,上述准则的运算量为

,是指数复杂度算法。

2.1.2异步最优多用户检测

在目前商用化的CDMA系统中,IS-95、cdma20001X和WCDMA的上行链路都是典型的异步CDMA系统。

假设每个用户发送2M+1比特的信息,则异步CDMA系统的接收信号可表示为

(7)

当相对时延

时,即为同步CDMA系统。

理论研究表明,通过简化并使用Viterbi算法优化后,异步最优多用户检测单个比特的算法复杂度为

,也是指数复杂度算法。

3.2.2次优多用户检测

最优多用户检测算法复杂度均为指数级,对于实现过于复杂。

因此近年来研究重点转向次优多用户检测。

目前可实现的次优多用户检测主要为两类——线性多用户检测和干扰删除。

线性多用户检测通过对匹配滤波器组输出进行线性变换,产生新的输出矢量进行判决以提高检测性能;干扰删除通过对干扰信号进行估计和重建,然后从接收信号中将其影响删除以提高检测性能。

线性多用户检测主要包含解相关MUD、最小均方误差(MMSE)MUD、多项式展开(PE)MUD、基于训练序列的自适应MUD以及盲自适应MUD等。

干扰删除多用户检测(MUD)主要分为串行干扰删除(SIC)、并行干扰删除(PIC)和迫零判决反馈(ZF-DF)等。

3.33G多用户检测技术标准化与应用研究

经过多年的研究与实践,目前,3G移动通信标准中的WCDMA、cdma2000和TD-SCDMA均将多用户检测纳入其技术演进路线,并已进入实际应用阶段。

3.3.1多用户检测在WCDMA中的标准化与应用

WCDMA系统的主要干扰是同频干扰,一般情况下,小区内干扰大于小区间干扰,但当用户移动到小区边缘时,小区间干扰可能会大于小区内干扰。

为有效克服上述两种干扰,WCDMA在其标准演进中引入了多用户检测技术。

3GPPR6标准中对终端定义了可选支持的增强性能先进接收机类型2——LMMSE码片均衡器;在R7标准中定义了增强性能先进接收机类型3——终端接收分集与LMMSE码片均衡器结合;在R8标准中又进一步定义了增强性能先进接收机类型3i。

增强性能先进接收机类型2和3主要用于对抗小区内干扰,增强性能先进接收机类型3i主要用于降低小区间干扰。

3GPP关于WCDMA终端多用户检测的射频一致性测试项目见表1。

 

表13GPPWCDMA终端射频一致性测试标准TS34.121-1中的多用户检测项目

测试项目

测试项目名称

3GPP版本

9.2.1F

HS-DSCH解调

——单链路性能

增强性能类型2

QPSK/16QAM,FRCH-Set6/3

R6

9.2.1H

64QAM,FRCH-Set8

9.2.1J

QPSK/16QAM,FRCH-Set10

9.2.1G

增强性能类型3

QPSK/16QAMFRCH-Set6/3

R7

9.2.1I

64QAMFRCH-Set8

9.2.1K

QPSK/16QAMFRCH-Set10

9.2.1L

增强性能类型3i

QPSK,FRCH-Set6

R8

9.2.2D

HS-DSCH解调

——开环分集性能

增强性能类型2-QPSK/16QAMFRCH-Set3

R6

9.2.2E

增强性能类型3-QPSK/16QAMFRCH-Set3

R7

9.2.3D

HS-DSCH解调

——闭环分集性能

增强性能类型2-QPSK/16QAMFRCH-Set6/3

R6

9.2.3E

增强性能类型3–QPSK/16QAMFRCH-Set3

R7

3.3.2多用户检测在cdma2000演进中的应用

在cdma2000网络中,导频信号占到总发射功率的15%——20%,终端通过解调并获得导频,可以确知前向链路扇区的扩频因子,进而实现导频信道的干扰删除(PilotInterferenceCancellation,PIC)。

此外,在前向链路所有信道上使用干扰删除技术可以进一步提升前向链路的容量。

Quasi-Linear(准线性)干扰删除技术(QLIC)是一种可同时应用于导频信道和业务信道的干扰删除技术。

从图1可以看出,在30km/h车速RC4配置下当网络负荷率为90%时,导频信道的干扰删除增益为0.68dB,准线性干扰删除的增益为1.93dB。

进一步仿真表明准线性干扰删除可以将语音容量提升约30%,即将每扇区用户数由平均35个提升至45个。

图1低Ec/Ior场景下cdma2000的干扰删除仿真

目前cdma2000某些终端芯片使用了QLIC技术,某些基站用芯片使用了PIC技术,此两种技术都由基带处理器完成。

QLIC在终端芯片完成,用于提升前向链路容量。

其原理是消除前向链路来自非服务扇区的干扰信号,提高终端接收信噪比,同时也将相应降低基站的平均发射功率。

PIC在基站完成,用于提升反向链路容量。

PIC使基站解调某个用户的反向链路数据时,将来自其他终端的对该用户导频的干扰信号抑制并删除,从而提高基站对该终端信号的接收信噪比,同时相应降低该终端的发射功率。

3.3.3多用户检测在TD-SCDMA演进中的应用

TD-SCDMA系统中,多址干扰对系统性能影响很大,因此系统容量主要取决于对此种干扰的处理。

由于多址干扰中包含许多先验信息(如用户信道码),因此多址干扰可以被利用进行多用户检测以提高信号分离的准确性。

根据对多址干扰处理的方法不同,多用户检测技术可分为干扰删除和联合检测两种,与WCDMA和cdma2000广泛使用干扰删除技术不同,TD-SCDMA系统主要采用了联合检测。

一个有K个用户的TD-SCDMA系统离散模型可表示为:

(8)

其中

是接收端接收的信号失量;

是信道矢量;

是K个用户的原始信号矢量;

是噪声矢量。

联合检测的目标就是根据

,估计出数据矢量

由所有用户的扩频码以及信道冲击响应决定,所以联合检测的前提是得到扩频码和信道冲击响应。

TD-SCDMA系统帧结构设置了用于信道估计的训练序列,使用训练序列估计出信道的冲击响应,通过导频获得扩频码,即可估计出原始发送矢量

在TD-SCDMA系统中,忽略背景噪声时,小区总干扰为:

(9)

其中,

为小区内干扰,

为其他小区干扰与小区内干扰之比。

理想的多用户检测系统中,本小区的多址干扰将被完全消除,因此仅剩

,对应采用多用户检测后的系统容量增益为

在蜂窝系统中,典型的

=0.55,此时联合检测可使系统容量增大到2.8倍。

联合检测的具体实现方法有多种,分为非线性、线性与判决反馈算法3大类。

从实现复杂度考虑,目前TD-SCDMA较多采用迫零线性块均衡算法(ZF-BLE,zeroforcing-blocklinearequalization),其具体实现可以用下式表示:

(10)

上式中

表示噪声协方差矩阵的逆矩阵,在一般情况下,该矩阵可认为是单位矩阵,则上式进一步简化为:

(11)

TD-SCDMA系统使用联合检测的主要优点有:

●检测效果优于传统RAKE接收机;

●提高系统容量,提升频谱效率。

主要不足有:

●对噪声有扩散,抗高斯白噪声能力差;

●数字信号处理复杂度高。

●在应用中容易遇到的问题有:

●信道估计的不准确性将影响联合检测准确性;

●随着处理信道数增加,算法复杂度呈非线性增长,现阶段实时算法难以达到理论上的最佳性能。

由于以上原因,TD-SCDMA系统并不单独使用联合检测,而是采用了联合检测与智能天线技术相结合的方法,充分发挥这两种技术的综合优势,使系统性能达到最优。

图2步行环境2A和2B、16用户,综合使用联合检测和智能天线技术的仿真结果

四、联合检测

对CDMA系统来说,由于无线信道的时变性以及多径效应等,码字不可能完全正交,因此系统中必然会存在多址干扰(MAI)和码间干扰(ISI)。

随着用户的增多或某些用户信号功率的增强,MAI就会成为CDMA系统的主要干扰,成为影响系统和性能提高的重要原因,因此CDMA系统是一个干扰受限的系统。

传统接收机,即RAKE接收,完全把MAI当做噪声处理,抗干扰能力差;在传统接收机基础上发展起来的多用户监测(MUD),充分利用MAI,中的有用信息来检测单个用户的信息,从而获得较好的判决效果。

1基本思想

随着TD-SCDMA的提出,1992年德国Kaiserlautern大学的A.Klein等人将消除MAI和ISI一并考虑,提出了同时消除这两种干扰的联合检测技术。

其核心就是利用均衡技术,将来及其他用户的ISI也当做MAI而一并消灭之。

联合检测技术是在多用户检测的技术基础之上提出的一种次优多用户检测技术。

该技术是减弱或消除多址干扰、多径干扰的有效手段,能够简化功率控制,降低功率控制精度,弥补正交扩频码相关性不理想所带来的消极影响,从而改善系统性能、提高系统容量、增大小区覆盖范围。

联合监测的基本思想是利用所有与ISI和MAI相关的先验信息,在一步之内就将所有用户信号分离出来。

从理论上来说,使用联合检测和智能天线相结合技术,可以完全抵消ISI和MAI的影响,这将大大提高系统的抗干扰能力和容量。

TD-SCDMA中联合检测的高效率主要因为TD-SCDMA利用了TDMA和同步CDMA方案。

TDMA的采用使每载波的大量用户被尽量均匀地分布到每个帧的时隙中,使得每时隙中并行用户数量较少,如TD-SCDMA在一个时隙中的并行码道最多为16个,这样不仅使每个时隙的干扰不致过高而且降低了联合检测实现的复杂度。

同步CDMA技术使得多用户信息在空中接口是同步的,占用同一时隙的多用户同时到达接收机,这种同步有利于减弱扩频码正交性破坏的影响,同时降低联合检测实现的复杂度。

2基本原理

在TD-SCDMA系统中,基站和终端都采用联合检测算法来消除MAI和ISI。

该联合检测技术是在传统检测的基础上,充分利用造成MAI干扰的所有用户信号及其多径的先验信息(如确知的的用户信道码和训练序列,各用户的信道估计等),把用户信号分离当做一个统一的相互关联的联合检测过程来完成,从而具有优良的抗干扰能力,降低了系统对功率控制精度的要求,因此可以更加有效地利用上行链路频谱资源,显著地提高系统容量。

联合检测基本原理如图2.5所示。

图2.5联合检测基本原理

设在每个突发时隙中用户的数目为K,每个用户发射N个数据符号,用户k发射的数据符号向量表示为

,每个数据符号使用长度为Q的扩频序列

扩频。

在码片速率下,用户k的信道响应

包含W个可分离径,即

为W维复数向量

用户k每个数据符号脉冲响应(

)可以表示为扩频序列和信道冲击响应的卷积,

(3-1)因此接收机突发时隙接收信号可以表示为

(3-2)

其中,e是(NQ+W-1)维接收信号向量;A是扩频码c和信道脉冲响应h构成的矩阵称为系统矩阵,它是一个(NQ+W-1)×KN维矩阵,代表K个用户信号的系统响应,它包含了ISI和MAI成分;n代表噪声序列。

系统矩阵A的形式如下:

k=1,N列

在接收端,利用接收信号中的中间码进行联合信道估计,从而得到各个用户的信道矩阵

根据估计出的各个用户的信道信息

和它们的扩频码信息

可以构造出系统矩阵A,因此可以估计出各用户的信息

3联合检测算法

根据不同的划分方法,联合检测算法分类也有很多。

按照具体实现方法大致分为线性算法和非线性算法;按照优化准则,可以分为基于迫零(ZF)和最小误差(MMSE)算法等。

迫零-分块线性均衡器(ZF-BLE)

ZF-BLE算法是基于Gauss-Markov定理的最佳加权最小二乘估计,其思路是令输出符号

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 法学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1