螺杆压缩机性能的计算吸入室中占主导地位外文文献翻译中英文翻译外文翻译.docx

上传人:b****5 文档编号:27715363 上传时间:2023-07-04 格式:DOCX 页数:19 大小:126.16KB
下载 相关 举报
螺杆压缩机性能的计算吸入室中占主导地位外文文献翻译中英文翻译外文翻译.docx_第1页
第1页 / 共19页
螺杆压缩机性能的计算吸入室中占主导地位外文文献翻译中英文翻译外文翻译.docx_第2页
第2页 / 共19页
螺杆压缩机性能的计算吸入室中占主导地位外文文献翻译中英文翻译外文翻译.docx_第3页
第3页 / 共19页
螺杆压缩机性能的计算吸入室中占主导地位外文文献翻译中英文翻译外文翻译.docx_第4页
第4页 / 共19页
螺杆压缩机性能的计算吸入室中占主导地位外文文献翻译中英文翻译外文翻译.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

螺杆压缩机性能的计算吸入室中占主导地位外文文献翻译中英文翻译外文翻译.docx

《螺杆压缩机性能的计算吸入室中占主导地位外文文献翻译中英文翻译外文翻译.docx》由会员分享,可在线阅读,更多相关《螺杆压缩机性能的计算吸入室中占主导地位外文文献翻译中英文翻译外文翻译.docx(19页珍藏版)》请在冰豆网上搜索。

螺杆压缩机性能的计算吸入室中占主导地位外文文献翻译中英文翻译外文翻译.docx

螺杆压缩机性能的计算吸入室中占主导地位外文文献翻译中英文翻译外文翻译

英文原文

3.1OneDimensionalMathematicalModel51

TheConservationofInternalEnergy

(3.1)

whereθisangleofrotationofthemainrotor,h=h(θ)isspecificenthalpy,m˙=m˙(θ)ismassflowratep=p(θ),fluidpressureintheworkingchambercontrolvolume,˙Q=˙Q(θ),heattransferbetweenthefluidandthecompressorsurrounding,˙V=˙V(θ)localvolumeofthecompressorworkingchamber.

Intheaboveequationthesubscriptsinandoutdenotethefluidinflowandoutflow.

Thefluidtotalenthalpyinflowconsistsofthefollowingcomponents:

(3.2)

wheresubscriptsl,gdenoteleakagegainsuc,suctionconditions,andoildenotesoil.

Thefluidtotaloutflowenthalpyconsistsof:

(3.3)

whereindicesl,ldenoteleakagelossanddisdenotesthedischargeconditionswithm˙disdenotingthedischargemassflowrateofthegascontaminatedwiththeoilorotherliquidinjected.

Therighthandsideoftheenergyequationconsistsofthefollowingtermswhicharemodel

Theheatexchangebetweenthefluidandthecompressorscrewrotorsandcasingandthroughthemtothesurrounding,duetothedifferenceintemperaturesofgasandthecasingandrotorsurfacesisaccountedforbytheheattransfercoefficientevaluatedfromtheexpressionNu=0.023Re0.8.ForthecharacteristiclengthintheReynoldsandNusseltnumberthedifferencebetweentheouterandinnerdiametersofthemainrotorwasadopted.Thismaynotbethemostappropriatedimensionforthispurpose,butthecharacteristiclengthappearsintheexpressionfortheheattransfercoefficientwiththeexponentof0.2andthereforehaslittleinfluenceaslongasitremainswithinthesameorderofmagnitudeasothercharacteristicdimensionsofthemachineandaslongasitcharacterizesthecompressorsize.ThecharacteristicvelocityfortheRenumberiscomputedfromthelocalmassflowandthecross-sectionalarea.Herethesurfaceoverwhichtheheatisexchanged,aswellasthewalltemperature,dependontherotationangleθofthemainrotor.

Theenergygainduetothegasinflowintotheworkingvolumeisrepresentedbytheproductofthemassintakeanditsaveragedenthalpy.Assuch,theenergyinflowvarieswiththerotationalangle.Duringthesuctionperiod,gasenterstheworkingvolumebringingtheaveragedgasenthalpy,

523CalculationofScrewCompressorPerformancewhichdominatesinthesuctionchamber.However,duringthetimewhenthesuctionportisclosed,acertainamountofthecompressedgasleaksintothecompressorworkingchamberthroughtheclearances.Themassofthisgas,aswellasitsenthalpyaredeterminedonthebasisofthegasleakageequations.Theworkingvolumeisfilledwithgasduetoleakageonlywhenthegaspressureinthespacearoundtheworkingvolumeishigher,otherwisethereisnoleakage,oritisintheoppositedirection,i.e.fromtheworkingchambertowardsotherplenums.

Thetotalinflowenthalpyisfurthercorrectedbytheamountofenthalpybroughtintotheworkingchamberbytheinjectedoil.

Theenergylossduetothegasoutflowfromtheworkingvolumeisdefinedbytheproductofthemassoutflowanditsaveragedgasenthalpy.Duringdelivery,thisisthecompressedgasenteringthedischargeplenum,while,inthecaseofexpansionduetoinappropriatedischargepressure,thisisthegaswhichleaksthroughtheclearancesfromtheworkingvolumeintotheneighbouringspaceatalowerpressure.Ifthepressureintheworkingchamberislowerthanthatinthedischargechamberandifthedischargeportisopen,theflowwillbeinthereversedirection,i.e.fromthedischargeplenumintotheworkingchamber.Thechangeofmasshasanegativesign

anditsassumedenthalpyisequaltotheaveragedgasenthalpyinthepressurechamber.

ThethermodynamicworksuppliedtothegasduringthecompressionprocessisrepresentedbythetermpdVdθ.Thistermisevaluatedfromthelocalpressureandlocalvolumechangerate.Thelatterisobtainedfromtherelationshipsdefiningthescrewkinematicswhichyieldtheinstantaneousworkingvolumeanditschangewithrotationangle.InfactthetermdV/dϕcanbeidentifiedwiththeinstantaneousinterlobearea,correctedforthecapturedandoverlappingareas.

Ifoilorotherfluidisinjectedintotheworkingchamberofthecompressor,theoilmassinflowanditsenthalpyshouldbeincludedintheinflowterms.Inspiteofthefactthattheoilmassfractioninthemixtureissignificant,itseffectuponthevolumeflowrateisonlymarginalbecausetheoilvolumefractionisusuallyverysmall.Thetotalfluidmassoutflowalsoincludestheinjectedoil,thegreaterpartofwhichremainsmixedwiththeworkingfluid.Heattransferbetweenthegasandoildropletsisdescribedbyafirstorderdifferentialequation.

TheMassContinuityEquation

(3.4)

Themassinflowrateconsistsof:

(3.5)

3.1OneDimensionalMathematicalModel53

Themassoutflowrateconsistsof:

(3.6)

Eachofthemassflowratesatisfiesthecontinuityequation

(3.7)

wherew[m/s]denotesfluidvelocity,ρ–fluiddensityandA–theflowcrosssection

area.Theinstantaneousdensityρ=ρ(θ)isobtainedfromtheinstantaneousmassmtrappedinthecontrolvolumeandthesizeofthecorrespondinginstantaneousvolumeV,asρ=m/V.

3.1.2SuctionandDischargePorts

Thecross-sectionareaAisobtainedfromthecompressorgeometryanditmaybeconsideredasaperiodicfunctionoftheangleofrotationθ.Thesuctionportareaisdefinedby:

(3.8)

wheresucmeansthestartingvalueofθatthemomentofthesuctionportopening,andAsuc,0denotesthemaximumvalueofthesuctionportcrosssectionarea.Thereferencevalueoftherotationangleθisassumedatthesuctionportclosingsothatsuctionendsatθ=0,ifnotspecifieddifferently.

Thedischargeportareaislikewisedefinedby:

(3.9)

wheresubscriptedenotestheendofdischarge,cdenotestheendofcompressionandAdis,0standsforthemaximumvalueofthedischargeportcrosssectionalarea.

SuctionandDischargePortFluidVelocities

(3.10)

whereμisthesuction/dischargeorificeflowcoefficient,whilesubscripts1and2denotetheconditionsdownstreamandupstreamoftheconsideredport.Theprovisionsuppliedinthecomputercodewillcalculateforareverseflowifh2

543CalculationofScrewCompressorPerformance

3.1.3GasLeakages

Leakagesinascrewmachineamounttoasubstantialpartofthetotalflowrateandthereforeplayanimportantrolebecausetheyinfluencetheprocessbothbyaffectingthecompressormassflowrateorcompressordelivery,i.e.volumetricefficiencyandthethermodynamicefficiencyofthecompressionwork.Forpracticalcomputationoftheeffectsofleakageuponthecompressorprocess,itisconvenienttodistinguishtwotypesofleakages,accordingtotheirdirectionwithregardtotheworkingchamber:

gainandlossleakages.Thegainleakagescomefromthedischargeplenumandfromtheneighbouringworkingchamberwhichhasahigherpressure.Thelossleakagesleavethechambertowardsthesuctionplenumandtotheneighbouringchamberwithalowerpressure.

Computationoftheleakagevelocityfollowsfromconsiderationofthefluidflowthroughtheclearance.TheprocessisessentiallyadiabaticFanno-flow.Inordertosimplifythecomputation,theflowisissometimesassumedtobeatconstanttemperatureratherthanatconstantenthalpy.Thisdeparturefromtheprevailingadiabaticconditionshasonlyamarginalinfluenceiftheanalysisiscarriedoutindifferentialform,i.e.forthesmallchangesoftherotationalangle,asfollowedinthepresentmodel.Thepresentmodeltreatsonlygasleakage.Noattemptismadetoaccountforleakageofagas-liquidmixture,whiletheeffectoftheoilfilmcanbeincorporatedbyanappropriatereductionoftheclearancegaps.

Anidealizedclearancegapisassumedtohavearectangularshapeandthemassflowofleakingfluidisexpressedbythecontinuityequation:

(3.11)

whererandwaredensityandvelocityoftheleakinggas,Ag=lgδgtheclearancegapcross-sectionalarea,lgleakageclearancelength,sealingline,δgleakageclearancewidthorgap,μ=μ(Re,Ma)theleakageflowdischargecoefficient.

Fourdifferentsealinglinesaredistinguishedinascrewcompressor:

theleadingtipsealinglineformedbetweenthemainandgaterotorforwardtipandcasing,thetrailingtipsealinglineformedbetweenthemainandgatereversetipandcasing,thefrontsealinglinebetweenthedischargerotorfrontandthehousingandtheinterlobesealinglinebetweentherotors.

Allsealinglineshaveclearancegapswhichformleakageareas.Additionally,thetipleakageareasareaccompaniedbyblow-holeareas.

Accordingtothetypeandpositionofleakageclearances,fivedifferentleakagescanbeidentified,namely:

lossesthroughthetrailingtipsealingandfrontsealingandgainsthroughtheleadingandfrontsealing.Thefifth,“throughleakage”doesnotdirectlyaffecttheprocessintheworkingchamber,butitpassesthroughitfromthedischargeplenumtowardsthesuctionport.

Theleakinggasvelocityisderivedfromthemomentumequation,whichaccountsforthefluid-wallfriction:

3.1OneDimensionalMathematicalModel55

(3.12)

wheref(Re,Ma)isthefrictioncoefficientwhichisdependentontheReynoldsandMachnumbers,Dgistheeffectivediameteroftheclearancegap,Dg≈2δganddxisthelengthincrement.FromthecontinuityequationandassumingthatT≈consttoeliminategasdensityintermsofpressure,theequationcanbeintegratedintermsofpressurefromthehighpressuresideatposition2tothelowpressuresideatposition1ofthegapto

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 交通运输

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1