高一数学集合的含义与表示二.docx
《高一数学集合的含义与表示二.docx》由会员分享,可在线阅读,更多相关《高一数学集合的含义与表示二.docx(11页珍藏版)》请在冰豆网上搜索。
高一数学集合的含义与表示二
高一数学集合的含义与表示
第一章集合与函数概念
1.1集合
1.1.1集合的含义与表示
【自主整理】
1.集合
(1)含义:
一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).
(2)相等:
只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.
2.表示
(1)字母表示法:
用一个大写英文字母表示集合,如A、B、C等.常见数集的表示:
自然数集记为N;整数集记为Z;正整数集记为N+或 N*;有理数集记为Q;实数集记为R;
(2)列举法:
把集合中的全部元素一一列举出来,并用花括号"{}"括起来表示集合,这种表示集合的方法叫做列举法.
(3)描述法:
在花括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.
3.元素与集合
(1)关系:
仅有两种:
属于和不属于.
(2)关系表示:
如果a是集合A中的元素,就说元素a属于集合A,记作a∈A;如果a不是集合A中的元素,就说元素a不属于集合A,记作aA.
【高手笔记】
1.集合的概念是数学中的原始概念,在学习过程中,应结合具体实例搞清它的含义.
2.集合元素的性质:
给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性;一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性;集合中的元素是没有顺序的,这就是集合的无序性.判断一些对象能否构成一个集合的关键是看是否满足集合元素的确定性.
3.和只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.
4.集合的分类:
按集合中元素的个数分为有限集和无限集.有限集是指含有有限个元素的集合;无限集是指含有无限个元素的集合.如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示;如果一个集合是有限集且所含元素较多或是无限集时,通常选择描述法表示.
5.用描述法表示集合时,在不致混淆的情况下,可以省去竖线及左边部分.如:
{直角三角形}等.
【名师解惑】
1.为什么"爱好唱歌的人"不能构成一个集合?
剖析:
学习了集合的概念后,很多同学对此产生质疑,总是迷惑不解.其原因是对集合元素的确定性理解不够充分,突破这个疑点的途径是从集合的含义来分析.教材中指出,把研究对象称为元素,把一些元素组成的总体叫做集合,教材只是这样作了简单地描述.我们可以这样来理解:
研究对象就是构成集合的每个对象即元素,一个对象是不是我们研究的对象(元素)呢?
其结果只有两种:
是或不是.这才符合数学具有严格性的特点,这就是我们所说的集合元素的重要性质确定性.因此给定一个集合,任意一个元素要么在这个集合中,要么不在这个集合中,二者必居其一.如果你是班内的文艺委员,让爱好唱歌的同学到音乐教室开会,那么就会出现:
你认为爱好唱歌的同学没有去,而你认为不爱好唱歌的同学反而去了,出现这种情况的原因是没有明确的标准来判断是否爱好唱歌.因此说"爱好唱歌的人"不能构成一个集合,这不符合集合元素的确定性.
2.如何区分数集和点集?
剖析:
难点是一些用描述法表示的集合,不容易区分是点集还是数集,是一个易错点.突破的途径是理解描述法的表示形式.如果一个集合中所有元素均是实数,那么这个集合称为数集,如果一个集合中所有元素均是点,那么这个集合称为点集.例如:
集合,集合A中元素代表符号是,满足,即大于1且小于2的实数组成集合A,故集合A是数集.集合,集合B中元素代表符号是,其中满足,则是一次函数图象上的点,故集合B是点集.因此,形如的集合是数集,形如的集合是点集.
【讲练互动】
【例题1】(2007浙江省宁波市高三第一次"十校联考",理科1)在数集中,则实数x的取值范围是
.
【解析】本题主要考查集合元素的互异性.实数x的取值满足集合元素的互异性,则,解得,∴实数x的取值范围是.
答案:
【绿色通道】在解决参数问题和判断集合元素的个数问题时,要灵活应用集合元素的确定性、互异性、无序性,这也是处理集合有关问题的一个隐含条件.
【黑色陷阱】本题的答案易错写成,其原因是对数学中"且"与"或"的含义混淆不清.在数学中,"且"表示同时成立的含义,而"或"表示至少一个成立的含义.表示全体实数中除去1和3剩下的实数,而表示全体实数.防止出现此类错误的方法是明确"且"与"或"的含义.
【变式训练】
1.已知集合,则实数的取值范围是
.
【解析】利用集合元素的互异性列出不等式,解得实数的取值范围.由题意得解得,即实数的取值范围是.
答案:
2.(2007届广东省韶关市高三摸底,理科1)下列各组两个集合和,表示同一集合的是()
A.=,=
B.=,=
C.=,=
D.=,=
【解析】只要两个集合的元素完全相同,这两个集合就表示同一集合.=,所以A正确;由于,所以B错误;集合中的元素是实数,而集合中的元素是点,所以C错误;集合=,所以D错误,故选A.
答案:
A
【例题2】判断下列集合是有限集还是无限集,并用适当的方法表示:
(1)被3除余1的自然数组成的集合;
(2)由所有小于20的既是奇数又是质数的正整数组成的集合;
(3)二次函数图象上的所有点组成的集合;
(4)设是非零实数,求的所有值组成的集合.
【思路分析】本题主要考查集合的表示法和集合的分类.用列举法与描述法表示集合时,一要明确集合中的元素,二要明确元素满足的条件,三是根据集合中元素的个数来选择适当的方法表示集合.
解:
(1)由于被3除余1的自然数有无数个,所以此集合是无限集,则选择描述法表示,又这些自然数常表示为.即表示用为:
;
(2)由题意得满足条件的正整数有:
.则此集合中的元素有7个,所以此集合是有限集,则用列举法表示为:
;
(3)由于二次函数图象上的点无数个,所以此集合是无限集,则用描述法表示.通常用有序数对表示点,那么满足条件的点组成的集合表示为:
;
(4)当时,;
当时,则或.
若,则有,若,,则有.
∴的所有值组成的集合共有两个元素-1和3,此集合是有限集,则用列举法表示为:
.
答案:
(1)无限集,;
(2)有限集,;(3)无限集,;(4)有限集,.
【绿色通道】一般情况下,常根据集合中所含元素的个数来选择表示集合的方法,对所含元素较少的有限集宜采用列举法,如
(2)(4);对无限集或元素较多的有限集宜采用描述法,如
(1)(3).
【变式训练】
1.集合的另一种表示法是()
A.B.C.D.
【解析】==,故选B.
答案:
B
2.用适当的形式表示下列集合
(1)绝对值不大于3的整数组成的集合
;
(2)方程的实数解组成的集合
;
(3)一次函数图象上所有点组成的集合
.
【解析】元素较少的有限集宜采用列举法;对无限集或元素较多的有限集宜采用描述法.
(1)绝对值不大于3的整数表示为,是有限集,用列举法表示为{-3,-2,-1,0,1,,2,3};
(2)方程的实数解仅有两个是,用列举法表示为;(3)一次函数图象上有无数个点,用描述法表示为.
【例题3】(2007年山东省滨城区月考,文科17)已知集合,若集合A中至多有一个元素,求实数的取值范围.
【思路分析】本题主要考查元素与集合之间的关系,以及集合的表示法.由描述法可知集合A是关于的方程的实数解集,首先考虑方程是不是一元二次方程.
解:
当时,方程只有一个根,则符合题意;
当时,则关于的方程是一元二次方程,由于集合A中至多有一个元素,则一元二次方程有两个相等的实数根或没有实数根,所以△=,解得.
综上所得,实数的取值范围是.
答案:
【绿色通道】将集合语言具体化为自然语言,将它们描述的语言形象化、直观化,是解决集合问题的常用技巧.本题转化为关于的方程的实数根的个数问题,这样就容易解决.
【变式训练】
1.已知集合是无限集,则实数=
.
解析:
集合是关于的方程的解集.当时,方程有无数解,则符合题意;当时,则关于的方程是一元一次方程,得,即此时集合仅有一个元素,则不合题意.故,填0.
答案:
0
2.设集合,若,则必有
(
)
A.B.C.D.
【解析】如果元素具有的形式,你们这个元素属于集合A.∵,∴有,,又,,∴,故B正确;当,时,,故A错误;按同样方法可以验证选项C、D也是错误的;故选B.
答案:
B
【教材链接】
1.教材第2页思考:
上面的例(3)到例(8)也能组成集合吗?
它们的元素分别是什么?
归纳总结这些例子,你能说出它们的共同特征吗?
答:
例(3)到例(8)也能组成集合.
例(3)的元素是:
金星汽车厂2003年生产的每一辆汽车;
例(4)的元素是:
2004年1月1日之前与我国建立外交关系的每一个国家;
例(5)的元素是:
每个正方形;
例(6)的元素是:
到直线l的距离等于定长d的每一个点;
例(7)的元素是:
方程的每个实数根即1、2;
例(8)的元素是:
新华中学2004年9月入学的每个高一学生.
这些例子的共同特征是:
每一个研究对象是元素,这些元素组成的总体构成了集合.
2.教材第3页思考:
判断以下元素的全体是否构成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流
答:
(1)大于3小于11的偶数组成集合,这个集合的元素是4,6,8,10.
(2)我国的小河流不能组成集合,因为小河流没有明确的标准,不符合集合元素的确定性,所以不能组成集合.
3.教材第4页思考:
(1)你能用自然语言描述集合吗?
(2)你能用列举法表示不等式的解集吗?
答:
(1)自然语言:
小于10的所有正偶数组成的集合.或大于1且小于9的所有偶数组成的集合.(答案不唯一)
(2)不能用列举法表示.因为不等式的解是,小于10的实数有无数个,并且这些数是连续的,所以不能用列举法表示.列举法适用于表示元素个数是有限个且较少的集合.
4.教材第6页思考:
(1)结合上述实例,试比较用自然语言、列举法、描述法表示集合时,各自的特点和适用的对象.
(2)自己举出几个集合的例子,并分别用自然语言、列举法、描述法表示表示出来.
答:
(1)自然语言的特点是富有表现力,是最基本的语言形式,但是具有多义性,有时难于表达,适用的范围非常广泛;列举法的特点是直观、明白,但有局限性,适用于元素个数较少的有限集;描述法具有抽象概括、普遍性的特点,适用于所含元素较多的有限集或无限集.
(2)例如,自然语言:
联合国常任理事国;列举法:
{中国,美国,英国,法国,俄罗斯};描述法:
{xx是联合国常任理事国}.
【教研中心】
[教学指导]
一、课标要求
1.通过实例了解集合的含义,体会元素与集合的属于关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识;
2.知道常用数集及其专用符号,了解集合元素的确定性、互异性、无序性,并能够用其解决有关问题,提高学生分析、解决问题的能力,培养应用意识.
二、教学建议
集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其它内容有着密切的联系,是学习、掌握和使用数学语言的基础.教材从学生熟悉的集合(自然数的集合、有理数的集合、不等式的解等)出发,结合实例给出元素、集合的含义,教材注重体现逻辑思考的方法,如抽象、概括等.
本节的重点是集合的含义与表示,其突破方法是结合学生的已有知识经验,通过大量的实例来学习;本节的难点是表示具体的集合时,如何从列举法和描述法中做出恰当的选择,其突破方法是对同一个集合用不同的方法来表示,具体体会它们的各自特点,归纳、总结各自的适用范围.
值得注意的问题:
由于本小节的新概念、新符号较多,建议教学时先引导学生阅读教材,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用.在信息技术条件较好的学校,可以利用网络平台让学生交流学习后的认识;也可以由教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的,在于培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.在安排训练时,建议把握好分寸,不宜搞偏题、怪题.
本节教学时间约需1课时.
【资源参考】
【走近大师】
为科学而疯的人--康托
康托(Contor,Georg)(1845-1918),俄罗斯--德国数学家,集合论的创立人.康托自幼对数学有浓厚兴趣.23岁获博士学位,以后一直从事数学教学与研究.他所创立的集合论已被公认为全部数学的基础.
1874年,康托的有关无穷的概念震撼了数学界.康托凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质的新思想模式,建立了处理数学中无限的基本技巧,从而极大地推动了分析与逻辑的发展.他发现了惊人的结果:
有理数是可列的,而全体实数是不可列的.
由于在研究无穷时往往推出一些合乎逻辑的但又很荒谬的结果(称为"悖论"),许多大数学家唯恐陷进去而采取退避三舍的态度.在1874-1876年期间,30岁的康托向神秘的无穷宣战.他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应.这样看起来,1厘米长线段内的点与太平洋面上的点,以及整个地球内部的点都"一样多",后几年,康托对这类"无穷集合"问题发表了一系列文章,通过严格证明得出了许多惊人的结论.
康托的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂.有人说,康托的集合论是一种"疾病",康托的概念是"雾中之雾",甚至说康托是"疯子".
来自数学权威们的巨大精神压力终于摧垮了康托,使他心力交瘁,患了精神分裂症,被送进精神病医院.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.
真金不怕火炼,康托的思想终于大放光彩.1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作"可能是这个时代所能夸耀的最巨大的工作."可是这时康托仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦.1918年1月6日,康托病世.
【同步测控】
我夯基我达标
1.下列各组对象中不能构成集合的是
A.北京尼赏文化传播有限公司的全体员工
B.2006年全国经济百强县
C.2007年全国五一劳动奖章获得者
D.美国NBA的篮球明星
解析:
根据集合元素的确定性来判断是否构成集合.因为A、B、C中所给对象都是确定的,从而可以构成集合;而D中所给对象不确定,原因是没有具体的标准衡量一位美国NBA球员是篮球明星,故不能构成集合.故选D.
答案:
D
2.下列关系中正确的是
(
)
A.B.C.D.
解析:
首先明确各个集合中的元素.中的元素是点,不是数,∴A、B错误;0是自然数,不是正整数,∴D错误,C正确,故选C.
答案:
C
3.以下集合与中,是不同集合的是
(
)
A.,
B.,
C.,
D.,
解析:
根据相同集合的定义来判断.由集合元素的无序性知A中;C中;D中;B中=,故选B.
答案:
B
4.有以下四个命题:
①"所有相当小的正数"组成一个集合;
②由1,2,3,1,9组成的集合用列举法表示为;
③{1,3,5,7}与{7,5,3,1}表示同一个集合;
④表示函数图象上的所有点组成的集合.
其中正确的是
(
)
A.①③
B.①②③C.③
D.③④
解析:
依据集合元素的性质和描述法及列举法的表示含义来判断.①中"相当小的正数"的标准不明确,不能构成集合;②中元素1重复,不符合元素的互异性,构成的集合应是;④的表示方法不对,由于集合的代表元素是点,而点用有序实数对(x,y)来表示,即正确的答案应表示为;③中依据集合元素的无序性知表示同一个集合,故选C.
答案:
C
5.对于集合,若,则,那么实数的值是.
解析:
需对的值分类讨论.当时,,则符合题意;当时,,则符合题意;当时,,则不合题意,所以.
答案:
6.集合可用列举法表示为
.
解析:
首先依据题意确定的值,则对分类讨论.由,得,则有,,,,.故用列举法表示为.
答案:
7.用适当方法表示下列集合,并指出它们是有限集还是无限集.
(1)不超过10的非负偶数的集合;
(2)大于10的所有自然数的集合.
思路分析:
根据集合中元素的个数选择列举法还是描述法.
解:
(1)不超过10的非负偶数有0,2,4,6,8,10,共6个元素,故用列举法表示为,这个集合是有限集;
(2)大于10的所有自然数的集合有无限个,故用描述法表示为,这个集合是无限集.
答案
(1)用列举法为,是有限集;
(2)用描述法表示为,是无限集.
8.设集合A=,集合B=,且集合A与集合B相等,求实数的值.
思路分析:
由集合A与集合B中的元素完全相同列出关于的方程组,解方程组得实数的值,要注意依据集合元素的互异性验根.
解:
由题意得.........①或.........②.
解①得或,经检验不合题意舍去,则;
解②得,经检验不合题意舍去.
综上所得.
答案:
我综合我发展
9.(2006山东高考卷,理科1文科1)定义集合运算:
,设集合A={0,1},B={2,3},则集合的所有元素之和为()
A.0B.6C.12D.18
解析:
由于A={0,1},B={2,3},,故对的取值分类讨论.当x=0,时,z=0;当x=1,y=2时,z=6;当x=1,y=3时,z=12,故所有元素之和为.故选D.
答案:
D
10.集合可用描述法表示为
.
解析:
观察集合中元素的规律即元素的共同特征,再用描述法表示.,,则元素的共同特征是,则用描述法表示为.
答案:
11.由组成的集合元素的个数最多为几个?
思路分析:
讨论这几个数的大小关系,根据集合元素的互异性来确定.
解:
设由组成的集合记为M.∵,∴由集合元素的互异性知集合M是由组成的.又∵知必与中的一个相等,∴集合M是由组成的集合.当,即时,集合M中元素的个数最多有两个.因此由组成的集合元素的个数最多为2个.
答案:
2个
12.集合、、三者之间有什么关系?
思路分析:
依据描述法的特点,明确集合中的元素是点还是实数,其元素具有什么特征.
解:
集合中的元素是,满足,即集合是数集,是函数的函数值组成的集合;集合中的元素是,满足,即集合是数集,是函数的自变量的取值组成的集合;集合中的元素是为有序数对,满足,即集合是点集,是函数的图象上所有点组成的集合.
答案:
集合和均是数集,而集合是点集.集合是函数函数值组成的集合,而集合是函数的自变量的取值组成的集合,集合是函数的图象上所有点组成的集合.
我创新 我超越
13.定义,若,,试用列举法表示集合.
思路分析:
由已知得集合,即集合A中不属于集合B的元素组成的集合,也就是.集合A中除去集合A和集合B的公共元素组成的集合.
解:
由题意得是集合N中除去集合M和集合N的公共元素组成的集合.观察集合M、N,它们的公共元素是2,3.集合N中除去元素2,3还剩下元素6,则.
答案: