锅炉燃烧过程控制系统设计.docx
《锅炉燃烧过程控制系统设计.docx》由会员分享,可在线阅读,更多相关《锅炉燃烧过程控制系统设计.docx(36页珍藏版)》请在冰豆网上搜索。
锅炉燃烧过程控制系统设计
锅炉燃烧过程控制系统设计
摘要
锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备之一。
而锅炉燃烧所用的煤炭、重油等又是极其重要的战略资源,不可再生。
因此锅炉的燃烧控制相当重要,控制不好将造成资源浪费、环境污染和效益低下。
要使锅炉燃烧达到最佳的燃烧状态,锅炉燃烧控制系统对锅炉的燃烧过程进行自动化控制是至关重要的。
燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。
目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。
燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同
的测量、控制手段来保证经济燃烧和安全燃烧。
本文通过对整个燃烧系统的分析和研究,分别确定了锅炉燃烧控制系统中的主蒸汽压力控制系统和炉膛负压控制系统的控制方案,然后对其控制规律及参数进行选择和整定。
在仪表选型时,采用了先进的数字式仪表,井以PID控制来实现,最后可达到锅炉安全、经济、高效的运行。
论文详细介绍了锅炉控制系统的设计,其中包括硬件结构、系统主要功能、系统硬件配置、软件设计原则、主程序流程等。
系统投入运行后,锅炉的燃烧效率和稳定运行情况都有了明显改善,有利于锅炉高效稳定运行,实现增产降耗的目标。
关键词:
锅炉;燃烧控制;PID控制;
ControlSystemDesignofBoilerCombustionProcess
Abstract
Boilerischemical,oilrefining,powergenerationandotherindustrialprocessesessentialtooneoftheimportantpowerequipment.Usedintheboilerburningcoal,heavyoilisanextremelyimportantstrategicresource,non-renewable.Thereforeveryimportanttotheboilercombustioncontrol,thecontrolwillnotresultinwasteofresources,environmentalpollutionandlowefficiency.Toburncombustiontoachievethebeststate,Boilercombustioncontrolsystemforautomaticcontrolofthecombustionprocessisessential.
Powerplantboilercombustioncontrolsystemisthemaincontrolsystem,Includingfuelcontrolsystems,airvolumecontrolsystem,furnacepressurecontrolsystem.Currently,mostpowerplantboilercombustioncontrolsystemstillusesPIDcontrol.Combustioncontrolsystemconsistsofmainsteampressurecontrolandcombustionratecontrolcascadecontrolsystemcomponents,Whichcontroltheamountoffuelburnratecontrol,airvolumecontrol,volumecontrolofthewindstructure,Respectively,eachindifferentsub-controlsystemMeasurement,controlmeanstoensureeconomicandsafeburningfire.Basedontheentirecombustionsystemanalysisandresearch,respectively,theboilercombustioncontrolsystemtodeterminethemainsteampressurecontrolsystemandthefurnacepressurecontrolsystemofthecontrolscheme,Anditscontrollawandparameterselectionandsetting.Intheselectionofinstruments,theuseofadvanceddigitalinstrument,wellthePIDcontroltoachieve,andfinallyreachtheboilersafety,economy,efficientoperation.
Paperintroducestheboilercontrolsystemdesign,includinghardwarestructure,themainfunctionofthesystem,hardwareconfiguration,softwaredesignprinciplesthemainprogramprocesses.Systemputintooperation,theboilercombustionefficiencyandstabilityofoperationhasasignificantimprovementisconducivetoefficientandstableoperationoftheboilertoachievethetargetyieldandreducingconsumption.
Keywords:
Boiler;combustioncontrol;PIDcontrol;
第一章引言
工业锅炉在工业生产中,尤其在冶金、电力和化工生产中占有重要地位,其控制效果的好坏,效率的高低,一直倍受工业界的关注【1】。
锅炉生产的蒸汽供工业生产直接使用,还供取暖使用。
还用于生活热水供应,洗浴和采暖的所谓生活锅炉。
用于工业生产和生活的锅炉数量大、分布广。
随着人们生活水平的提高,对能源的需求量急剧增大,锅炉的数量也就越来越多。
锅炉的广泛使用也带来许多问题,诸如:
(1)大量的非再生一次能源被消耗,能源枯竭问题令人忧虑;
(2)CO2等温室气体的排放,虽然会有利于植物生长,增加粮食产量,但会使地球变暖,冰山融化,海平面升温,威胁人类的生存空间;
(3)烟尘SOX,NOX,痕量重金属,二恶英等有害物质的排放,威胁人类以及动、植物的生长和生存。
随着人类征服自然和改造自然的能力增强,大自然也对人类进行了惩罚,我国西部,特别是西北地区存在的严重水土流失、土地沙漠化、草场退化、沙尘暴频繁发生等就是特例。
这些自然灾害已成为可持续发展的一个障碍,正在缩小我们的生存和发展空间。
目前,世界各国都在致力于高效、低污染过路的研究和开发工作,力求使得优于锅炉燃烧而对环境造成的破坏追小化。
各种工业的生产性质与规模不同,工业和民用采暖的规模大小也不一样,因此所需的锅炉容量,蒸汽参数,结构,性能方面也不尽相同。
锅炉是供热之源,锅炉机器设备的任务在于安全,可靠,有效地把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。
为了提高热量及效率,锅炉向着高压,高温和大容量等方面发展。
供热锅炉除了生产工艺有特殊需求外,所生产的热水不需要过高的压力和温度,容量也无需很大。
为了提高工业锅炉的热效率,降低燃烧对环境造成的污染,燃烧过程控制成为一个重要的研究课题。
其控制效果的好坏,效率的高低,一直倍受工业界的关注。
锅炉的自动控制经历了三、四十年代的参数仪表控制,四、五十年代的单元组合仪表,综合参数仪表控制,直到六十年代兴起的计算机过程控制几个阶段。
尤其是近一、二十年来,随着先进控制理论和计算机技术的发展,加之计算机各项性能的不断增强及价格的不断下降使锅炉应用计算机控制很快得到普及和应用。
锅炉燃烧优化最早是以提高锅炉燃烧安全性和经济性为目标的。
早在20世纪70年代,我国就开始了对锅炉燃烧优化技术的研究。
如我国开发的氧化锆氧量计,一次风速监测系统等都属于早期的锅炉燃烧优化产品。
20世纪80年代末期和90年代初期"随着我国电厂“节能降耗”措施的推行,电厂开始普遍关注锅炉燃烧优化技术,通过燃烧优化降低锅炉煤耗"提高火电厂发电效率。
20世纪90年代中期和末期,随着测量技术的发展,许多企业研制开发了一系列重要的影响锅炉燃烧参数的在线量仪表,如飞灰含碳量在线检测装置,煤粉浓度细度在线检测装置,煤质成分在线检测装置,锅炉火焰监测系统等。
同期,随着人工智能技术的发展,在分散控制系统DCS层面上控制逻辑的优化,先进的人工智能技术在锅炉燃烧优化上应用的研究也开始受到了广大科研人员的关注。
20世纪90年代末期,随着社会对环境的关注,电站锅炉燃烧优化已由最初的以安全性,经济性为目标的优化发展到经济性和安全性,环保并举的时期。
电子信息技术人工智能技术给电站锅炉燃烧优化注入了新的活力,锅炉燃烧优化技术进入新的快速发展时期。
电厂锅炉利用煤的燃烧发热,通过传热对水进行加热,产生高压蒸汽,推动汽轮机发电机旋转,从而产生强大的电能。
锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的需求,同时保证锅炉的安全经济运行。
锅炉燃烧过程自动控制主要包括三项控制内容:
控制燃料量、控制送风量、控制引风量。
为实现对燃料量、送风量和引风量的控制,相应的有三个控制系统,即燃料量控制系统、送风量控制系统和引风量控制系统。
以上三个控制系统之间存在着密切的相互关联,要控制好燃烧过程,必须使燃料量、送风量及引风量三者协调变化。
以主蒸汽压力控制系统为主回路,燃烧率控制系统为内回路,通过传感器采集炉膛压力,含氧量和炉膛负压来调节锅炉的给煤量,送风量和引风量从而达到最佳热效率。
燃烧控制系统是电厂热工控制的重要组成部分,目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。
燃烧控制系统由主蒸汽压力控制和燃烧率控制组成控制系统,其中燃烧率控制由燃烧量控制、送风量控制、引风量控制三个子系统构成。
锅炉生产燃烧系统自动控制的基本任务是使燃料所产生的热量适应蒸汽负荷的需要,同事还要保证经济燃烧和锅炉的安全运行。
具体控制任务可分为三个方面:
一要稳定蒸汽母管压力。
二要维持锅炉燃烧的最佳状态和经济性。
三要维持炉膛负压在一定范围。
这三者是相互关联的【2】。
随着生产的发展,锅炉日益广泛的应用于工业生产的各个领域,成为发展国民经济的重要热工设备之一。
在现代的建设中,能源的需求是非常大的,然而我国能源的利用率极低,所以提高锅炉的热效率具有极为重要的实际意义。
此外,锅炉是否因地制宜地有效地燃用地方燃料,并满足环境保护的各项要求而努力解决烟尘污染问题,以提高操作管理水平,减轻劳动强度,保证锅炉额定运行及运行效率,安全可靠的供热等课题。
本课题主要方向是采用过程控制对锅炉进行控制,采用先进的控制算法,以达到优化技术指标、提高经济效益和社会效益、提高劳动生产率、节约能源、改善劳动条件、保护环境卫生、提高市场竞争能力的作用。
第二章锅炉的组成及工作原理
2.1锅炉的基本构造
锅炉燃烧过程自动控制系统的任务是控制燃料燃烧过程,使燃料燃烧所提供的热量适合外界对锅炉输出的蒸汽负荷的需求,同时保证锅炉的安全经济运行。
【3】锅炉是一种产生蒸汽或热水的热交换设备。
它通过燃料的燃烧释放大量热能,并通过热传递把能量传递给水,把水变成蒸汽或热水,蒸汽或热水直接供给工业和生活中所需要的热能。
所以锅炉的中心任务是把燃料中的化学能有效的转化为蒸汽的热能。
图1.1为简单锅炉的大体组成部分。
锅炉的主要设备包括气锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧设备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃料供给设备以及除灰除尘设备等。
气锅:
由上下锅筒和三簇沸水管组成。
水在管内受管外烟气加热,因而管簇内发生自燃的循环流动,并逐渐气化,产生的饱和蒸汽积聚在上锅筒里面。
炉子:
是是燃烧从充分燃烧并释放出热量的设备。
炉膛:
保证燃料的充分燃烧,并使水流受热面积达到规定的数值。
锅筒:
使自然循环锅炉个受热面能适应负荷变化的设备。
(须指出,直流锅炉内无锅筒。
)
水冷壁:
主要是辐射受热面,保护卢比的作用。
过热器:
是将气锅所产生的饱和蒸汽继续加热为过热蒸汽的换热器。
过热器一般都装在炉膛出口。
省煤器:
是利用余热加热锅炉给水,以降低排出烟气温度的换热器。
采用省煤器后,降低了排烟温度,提高了锅炉效率,节省了燃料。
同时,由于提高了进入汽包的给水温度,减少了因温差而引起汽包壁的热适应力,从而延长了汽包的使用寿命。
燃烧设备:
将燃料和燃烧所需的空气送入炉膛并使燃料着火稳定,充分燃烧。
燃烧设备主要有磨煤机、给煤机、燃烧器、风机等【4】。
引风设备:
包括引风机、烟道和烟囱等几部分。
用它将锅炉中的烟气连续排出。
送风设备:
包括有鼓风机和分道组成。
用它来供应燃料所需的空气。
给水设备:
由水泵和给水管组成。
空气预热器:
是继续利用离开省煤器后的烟气余热,加热燃料燃烧所需要的空气,是一个换热器。
省煤器出口烟温度高,装上空气预热器后,可以进一步降低排烟温度,也可改善燃料着火和燃烧条件,降低不完全燃烧所造成的损失,提高锅炉机组的效率。
水处理设备:
其作用是为清除水中的杂质和降低给水硬度,以防止在锅炉受热面上结水垢或腐蚀。
燃料供给设备:
由运煤设备、原煤仓和储煤斗等设备组成,保证锅炉所需燃料供应。
除灰除尘设备:
是收集锅炉灰渣并运往储灰场的设备【5】。
此外,出了保证锅炉的正常工作和安全,蒸汽锅炉还必须装设安全阀、水位表、高低水位报警器、压力表、主汽阀、排污阀和止污阀等,还有用来消除受热面上积灰的吹灰器,以提高锅炉运行的经济型。
图2.1过炉控制系统硬件组成图
2.2锅炉的工作原理及过程
锅炉是一种生产蒸汽的换热设备。
它通过煤、由或燃气等的燃烧释放出化学能,并通过传热过程将能量传递给水,使水转变为蒸汽,蒸汽直接供给工业生产中所需的热能,或通过蒸汽动力机,嫩而过转变为机能,或通过汽轮发电机转变为电能。
所以锅炉的中心任务是把燃料中的化学能最有效的转变为蒸汽的热能。
因此,近代锅炉亦称为蒸汽发生器。
调节系统在蒸汽锅炉热工燃烧时有着很大的辅助作用,能够为燃烧环节提供必要的环境,协调好每个步骤的有序进行【6】.锅炉的工作过程概括起来应该包括三个同时进行的过程:
燃料的燃烧过程、水的气化过程、烟气向水的传热过程。
2.2.1燃料的燃烧过程
首先将燃料(这里用煤)加到煤斗中,借助于重力下落在炉膛排面上,炉排接电动机通过变速此轮箱减速后有链轮来带动,将燃料煤带入炉内。
燃料一面燃烧,一面向后移动燃料所需要的空气是由风机送入炉排腹中风仓后,向上穿过炉排到达燃料层,进行燃料反应形成高温烟气。
燃料燃烧剩下的灰渣,在炉排末端翻过除渣板后排入灰斗,(若是燃气式锅炉就没有这一部分了)这整个过程称为燃烧过程。
2.2.2水的汽化过程
水的汽化过程就是蒸汽的产生过程,主要包括水循环和水分离过程。
经处理的水由水泵加压,先流经省煤器而得到预热,然后进入气锅。
锅炉工作时气锅的工作介质是处于饱和状态的汽水混合物。
位于烟温较低区段的对流管束,因受热较弱,汽水工质的容量较大,而位于烟温较高区段的对流管束,因受热强烈,相应的汽水工质的容量较小,从而量大的工质则向上流入下锅筒,而容量小的工质则向上流入上锅筒,形成了锅水的自然循环。
蒸汽所产生的过程是借助于上锅筒内设的汽水分离装置。
以及在锅筒本身空间的重力分离力作用,使汽水混合物得到分离。
蒸汽在上锅筒顶部引出后,进入蒸汽过热器,而分离出来的水仍回到上锅筒下半部的水中。
锅炉中的水循环,也保证与高温烟气相接处的金属受热面的冷却而不被烧坏,是锅炉能长期安全运行的必要条件。
而汽水混合物的分离设备则是保证蒸汽品质和蒸汽过热可靠工作的必要设备。
2.2.3烟气向水传热过程
由于燃料的燃烧放热,炉内温度很高在炉膛的四周墙面上,都布置一排水管,俗称水冷壁。
高温烟气与水冷壁进行强烈的辐射换热,将热量传给管内工质水。
继而烟气受引风机和烟囱的引力而向炉膛上方流动。
烟气从炉膛出口掠过放渣管后,就冲刷蒸汽过热器,一组垂直放置的蛇形管受热面,使气锅中产生的饱和蒸汽在其中受烟气加热而得到的过程。
烟气流经过过热器后掠过胀接在上、下锅筒间的对流管束,在管束间设置了折烟墙使烟气呈“S”型曲折地横向冲刷,再次以对流换热的方式将热量传递给管束的工质。
沿途逐渐降低温度的烟气最后进入胃部烟道,与省煤器和空气预热器内的工质进行热交换后,以经济的较低的烟温排出锅炉。
省煤器实际上同给水预热器和空气预热器一样,都设置在锅炉尾部(低温)烟道,以降低排烟温度提高锅炉效率,从而节省了燃料。
以上就是一般锅炉工水的过程,一个锅炉进行工作,其主要任务是:
(1)要使锅炉出口压力稳定。
(2)保证燃烧过程的经济型。
(3)保持锅炉负压恒定。
通常我们是路膛负压保持在微负压(-10—80Pa)。
为了完成上述三项任务,我们对三个量进行控制:
燃料量,送风量,引风量。
从而使锅炉能正常运行。
第三章锅炉燃烧控制系统设计
3.1锅炉燃烧控制系统的任务
锅炉燃烧系统的控制与燃料种类、燃烧设备以及锅炉形式等有密切关系。
锅炉燃烧控制系统的设计过程中,控制方案选择的好坏对实控制目的起到了非常重要的作用【7】。
由锅炉燃烧理论可知,对燃煤锅炉热效率影响较大且可变的热损失主要有排烟热损失、机械不完全燃烧热损失、化学不完全燃烧热损失【8】。
现侧重以燃煤锅炉来讨论燃烧过程的控制。
燃烧过程的控制基本要求有三个:
第一、保证出口蒸汽压力稳定,能按负荷要求自动增减燃料量;
第二、燃烧良好,供气适宜,既要防止由于空气不足使烟囱冒黑烟,也不
因空气过量而增加热量;
第三、保证锅炉安全运行。
在该控制系统中,可选用的操纵变量也由3个:
料量、送风量和引风量。
组成的燃烧系统的控制方案要满足燃烧所产生的热量,适应蒸汽负荷的需要;使燃料与空气量之间保持一定的比值,保证燃烧的经济性和锅炉的安全运行;使引风量与送风量相适应,保持炉膛一定的负压,以免负压太小,甚至为正,造成炉膛内热烟气往外冒出,影响设备和工作人员的安全;如果负压过大,会使大量冷空气漏进炉内,从而使热量损失增加。
此外,还需防止燃烧嘴背压太高时脱火,燃烧嘴背压太低时回火的危险。
3.2锅炉燃烧控制系统的组成
燃烧系统自动调节的第一个任务是维持锅炉出口热水温度保持稳定,克服自身燃料方面的扰动,保证负荷与出力的协调;第二个任务是使燃料量与空气量相协调(风煤比),保证燃烧的经济性;第三个任务是使引风量与送风量相适应,维持炉膛压在一定范围内【9】。
锅炉燃烧控制系统由主蒸汽压力控制系统和炉膛负压控制系统【10】。
主蒸汽压力控制系统又包含燃料控制系统和送风控制系统,由于这两个控制系统是紧密联系的,所以一般不将它们分开讨论;在炉膛负压控制系统中,送风量对炉膛压力的影很小,炉膛压力主要是靠引风机来调节的,所以有时它也被称为引风控制系统。
在整个锅炉燃烧控制系统中,蒸汽压力的变化表示锅炉蒸汽的产生量与负荷的耗汽量不相适应,因此必须相应的而改变燃料的供应量,以改变锅炉蒸汽的产量。
当燃料改变时,必须相应的改变送风量,使燃料量与空气量相适应,保证燃烧过程有较高的经济性。
同时,当送风量改变时,也应该相应的改变引风量,从而使得炉膛压力保持在-20Pa左右。
锅炉是一个多输入、多输出、多回路、非线性的相互关联的复杂的控制系统,调节参数与被调节参数之间,存在着许多交叉的影响,调节难度非常大。
我们将系统控制分散成给煤控制,送风控制,汽包液位控制,炉膛负压控制等一系列闭环控【11】。
3.2.1主蒸汽压力控制系统
本炉采用中间储仓式制粉系统,其特点是制粉系统出力的变化并不直影响锅炉的负荷。
当锅炉负荷发生变动时,是通过改变给粉机转速进行的。
当锅炉负荷变化,调节给粉机转速时,给粉量的增减应缓慢进行,调节范围不易太大。
若转速过高,不但会因煤粉浓度过大堵塞一次风管,而且容易使给粉机超负荷。
若转速过低,则在炉膛温度不太高的情况下,由一于浓度不足,着火不稳,容易发生熄火。
给粉机的转速控制在300一800r/min的范围内。
调整给粉机转速的同时,应注意调整送、弓}风量,保持汽压和汽温的稳定。
增加负荷时,先增加风量,随之增加给粉量;减负荷时,先减少给粉量,随之减少风量,并使同层给粉机的下粉量一致,以便于配风。
当外界负荷变化而需要调节锅炉出力时,随着燃料量的改变,锅炉的风量也需要作出相应的调节。
在锅炉运行中,实际进入炉内的空气不可能全部与燃料接触并发生完全反应。
为了减少化学不完全燃烧热损失和烟气热损失,获得良好的燃烧效率,实际送入炉内的空气量通常比理论计算空气量多一些,两者之比称为过量空气系数α。
过量空气系数的控制是通过烟气分析仪测量烟气中的02成分来实现的。
由一于目前普遍采用氧量计,过量空气系数α与烟气中O2含量关系如式3一1所示:
(3-1)
式中02一烟气中的含氧量,%;
α一过量空气系数。
因此运行人员可直接根据氧量表的数值来控制送入炉膛内空气量,而不必换算过量空气系数。
从运行经济来看,在一定范围内,随着炉膛内过量空气系数的增大,可以改善燃料与空气的接触和混合,有利于完全燃烧,使化学不完全燃烧损失降低。
但是,当过量空气系数过大时,则因炉膛温度降低和烟气流速加快使燃烧时间缩短,可能使不完全燃烧损失反而增加,’而烟气热损失则总是随着过量空气系数的增大而增加的。
所以,过量空气系数过大时,锅炉总的热损失就要增加,与此同时,还将使送、引风机的电耗增大。
合理的过量空气系数应使各项热损失之和为最小。
从锅炉工作的安全性来看,炉内过量空气系数过小,会使燃料燃烧不完全,造成烟气中含有较多的未燃尽炭黑和一氧化碳可燃气体等,在尾部烟道可能发生可燃物在燃烧。
由一于灰分在还原性气体中熔点降低,易引起炉内结渣以及高温硫腐蚀等不良后果。
过大的过量空气系数使煤粉炉受热面管子和引风机叶片的磨损加剧,影响设备的使用寿命。
此外,过量空气系数增大时,由一于过剩氧的相应增加,将使燃料中的硫形成三氧化硫,烟气露点也相应提高,从而使空气预热器发生腐蚀。
同时,烟气中的氧化氮也将增多,影响排放指标。
总之送风量过大或过小都会给锅炉的安全运行带来不良的影响。
锅炉总风量的调节是通过改变送风机的出力来实现的。
本炉所使用的送风机为轴流风机,通过改变风机动叶角度来调节风量。
在锅炉的风量控制中除了改变总风量外,一、二次风的配合调节也是十分重要的。
一、二次风的风量分配应根据它们所起的作用进行调节。
一次风量应已能满足进入炉膛的分粉混合物挥发燃烧及固体焦炭的氧化需要为原则,二次风量不仅应满足燃烧需要,而且还应起到补充一次风末段空气量不足的作用。
此外,二次风应能与进入炉膛的可燃物充分混合,这就需要较大的二次风速,对高温火焰起到搅拌混合的作用,以强化燃烧。
当两台风机均运行时,在调节风量的过程中,通常应同时改变两台风机的风量,并注意观察电动机的电流以及