中部车场设计.docx
《中部车场设计.docx》由会员分享,可在线阅读,更多相关《中部车场设计.docx(43页珍藏版)》请在冰豆网上搜索。
中部车场设计
前言
通过在辽源职业技术学院内为期两年的学习,对“煤矿开采技术”这一专业有了一定的认识,对井下生产一线的综采工作面有了进一步了解,在此基础上通过查阅资料和指导老师的指导下做了本次设计。
本次毕业设计是为了让我们更清楚地理解怎样确定综采工作面的系统,为我们即将走上工作岗位的毕业生打基础。
通过对综采工作面的系统更加深入的了解和掌握,不断提高技术和工作能力,才能更好的解决好综采工作面设备使用者面临的主要问题,管理好综采工作面的系统。
当系统出现问题时能找出引起系统故障真正的原因
由于设计者所学专业知识不够精深,加之时间仓促,在设计中缺漏和不妥之处,恳请评阅人批评指正。
第一章采区车场轨道线路设计
第二章采区中部车场形式
第三章采区中部车场设计及计算
第一章采区车场轨道线路设计
一、采区车场轨道设计
(一)采区轨道线路及线路连接
采区轨道线路包括由采区上部、中部、下部车场组成的车场线路和与之相连接的轨道路线。
轨道设计必须与采区运输方式和生产能力相适应;必须保证采区调车方便、可靠;操作简单、安全;作效率和尽可能减少车场的开掘及维护工作量。
平面线路的连接线路包括曲线及道岔的连接,斜面间或斜面与平面间的线路连接都是由竖直面上的曲线连接的。
(二)线路设计的内容和步骤
车场线路设计的内容包括线路总平面布置设计及线路坡度设计。
采区车场设计最主要的是车场内轨道线路设计。
轨道线路设计必须与采区运输方式和生产能力相适应;必须保证车场内调车方便、可靠;操作简单、安全;提高工作效率和尽可能减少车场的开掘及维护工程量。
1、设计平面线路
确定车场形式—绘制线路总平面布置草图—进行连接点线路设计计算线路平面布置总尺寸,做出线路布置的平面图。
2、线路坡地设计
沿有关线路作一个或数个剖面图,并用文字表示出每一坡度范围内线路的长度及坡度。
一、采区轨道线路设计基础知识
(轨道、道岔、曲线、线路施工、线路联接点)
采区车场轨道线路设计(采区下部、中部、上部车场)
二、轨道线路设计基本知识
(一)采区轨道线路分类
1、线路位置与作用
(1)轨道上山
(2)采区车场
(3)工作面轨道平巷
2、线路空间状态
(1)水平:
下部车场:
大巷装车站、区段轨道平巷
(2)倾斜:
上山中部车场斜面线路。
(二)采区车场线路设计步骤
进行采区车场施工设计,必须进行线路设计,为巷道线路施工提供准确数据。
(1)确定车场形式
(2)绘制车场平面布置草图
(3)进行线路连接点、线路参数设计计算
(4)计算线路平面布置总尺寸
(5)绘制线路布置图
(三)矿井轨道
1.轨道
在巷道底板铺设道床(道砟)、轨枕、钢轨和联结件等组成。
1)轨型:
以单位长度质量表示,/kg·m-1,(kg/m)
现采用标准轨型:
15、22、30、38、43(新设计矿井使用)
原使用的轨型:
11、15、18、24(生产矿井使用)
2)轨距
(1)轨距:
单轨线路是有两根轨道组成,
两根轨道上轨头内缘的距离为轨距。
矿用标准轨距:
600mm;900mm(762mm)
(2)轨距选用:
根据矿井生产能力大小和矿井运输方式选用。
大型矿井:
一般选用—900mm轨距
使用3t、5t矿车(辅运和主运)
中、小型矿井:
多选用—600mm轨距
使用1t、3t矿车(辅运和主运)
3)轨道线路中心距:
双轨线路中心线间距S
(1)直线段:
SB,mm。
式中:
B—机车宽度,mm;
—两列车对开时最突出部分之间的距离,/mm,
200mm。
(规程规定)
(2)弯曲段:
S1B+S
S—曲线巷道线路,由于车辆的外伸和内伸轨道中心线必须加宽
机车运输:
S=300mm;其它运输:
S=200mm
《煤矿安全规程》23条规定:
装车点:
700mm,摘挂钩点:
1000mm
(3)轨中心距选用:
线路中心距一般取100mm为单位的整数倍选用。
例:
使用3t矿车,机车运输,机车宽度1360mm,轨距900mm,
直线段:
S=B+=1360+200=1560mm1600
曲线段:
S1=S+S=1600+300=1900mm。
矿井轨道轨中心距系列值:
600mm轨距(1300、1400、1600、1700、1900)
900mm轨距(1600、1800、1900、2200、2500)
4)线路表示方法:
两根轨道以中心线作为线路的标志,
进行线路施工设计时。
图中采用单线表示)
单轨线路—单线(细实线);
双轨线路—双线(细实线)。
2.道岔
道岔:
使车辆由一线路转运到另一线路的装置
煤矿常用道岔(新的标准:
MT/T2--95)
(1)单开ZDK
(2)对称ZDC
(3)渡线ZDX
(增加Z代表窄轨道岔)
标准道岔共有七个系列
600轨距:
615、622、630、643、
900轨距:
915、930、938
2)道岔类别及参数
(1)ZDK--单开道岔在线路图中,道岔以单线表示。
道岔主线与岔线用粗实线绘出
主要参数:
a、b—外形尺寸,
—辙叉角。
单开道岔辙叉号有
(M:
2、3、4、5、6)
(2)ZDC--对称道岔
道岔参数:
a、b—外形尺寸,—辙叉角。
对称道岔辙叉号(M:
2、3、4)
(3)ZDX—渡线道岔
道岔参数:
a、b—外形尺寸;S1—线路中心距;L—道岔总长度;—辙叉角
渡线道岔辙叉号(4、5、6)
二、平面线路联接
线路联接基本类型
巷道转弯:
直线——曲线——直线
巷道平移(线路平移):
直线—曲线—直线—曲线—直线
巷道分岔:
直线——道岔——曲线——直线
1、单轨曲线
巷道转弯中间必须加入曲线段;
1)曲线参数
已知:
巷道转角,选用:
曲线半径R,计算:
切线长T:
圆弧长K:
2)曲线半径确定:
车辆进入曲线后,前轴外轨轮,后轴内轨轮碰撞轨道。
根据行车速度,限定碰撞冲击角,确定曲线半径。
煤矿轨道曲线系列值:
4、6、9、12、15、20、25、30、40/m
例:
计算曲线参数
单轨曲线
δ=40°
R=25000(mm)
K、T参数计算:
K=17452(mm)
T=9099(mm)
注:
曲线半径是轨中心距的半径。
3)曲线线路外轨抬高和轨距加宽
轨道线路进入曲线线段后,为保证车辆安全运行,必须进行外轨抬高和轨距加宽。
(也为施工参数,现场施工人员需要掌握)
(1)外轨抬高
和轨中心距大小、曲率半径与车辆运行速度有关。
计算原理分析△abo∽△OBA(△ACO)
4)线路的平行移动
(1)特点:
单轨线路异向曲线联接,即在两个反向曲线之间加一缓和直线C,将轨道平移一定距离。
C=SB+2X
(2)确定C值考虑的原则:
a.线路外轨内轨,内轨外轨,车辆不能同时受异向曲线两根轨道外轨抬高的影响。
b.车辆离开第一个曲线的X之后,经过一个SB直线段后再进入第二曲线的X
三、采区中部车场线路设计
1、单道起坡甩车式车场
(1)甩入平巷的单道起坡甩车场
甩入平巷的单道起坡甩车场
2、斜面线路
(1)斜面线路的布置方式。
斜面线路回转方式
(a)一次回转;(b)二次回转
(2)斜面线路联接系统参数。
回转角及伪倾角的计算
2、竖曲线
竖曲线参数
3、平面线路
当线路转入平巷后,平行移动了S距离
平移距为S时,异向曲线中缓和直线段
为
4、平面线路的平面图及坡度图
各点标高分别为:
○点相对标高为±0
D点:
A点:
C点:
线路坡度图
二、双道起坡甩车式车场
在斜面上设两个道岔(甩车道岔和分车道岔),使线路在斜面上变为双轨,空重车线分别设置竖曲线起坡。
1、斜面线路
道岔-曲线-道岔系统
斜面线路布置方式
(a)道岔-曲线-道岔系数;(b)、(c)、(d)道岔-道岔系数
优点:
由于道岔间设有斜面曲线,回转角较大,故甩车场斜面交叉点的长度和坡度均较小,易于开掘和维护,也便于设置简易交岔点。
道岔-道岔系统
2、平面线路储车线高、低道线路
3、竖曲线
斜面线路二次回转方式竖曲线位置的确定
斜面线路布置的特点:
低道竖曲线紧接在联接点曲线之后布置,但高道竖曲线上端点不能进入第二道岔。
将提、甩车线向垂直轴上投影,可得:
将提、甩车线向水平面上投影,得
三、采区辅助运输
采区辅助运输的中部车场一般采用单钩甩车场:
1)双翼采区轨道上山与运输上山沿同一层位布置时,需开掘绕道,采用甩入绕道的甩车场;
2)两翼同时开采时,运输量较大,采用双向甩车场,分别甩入绕道与平巷。
1绕道式中部车场所谓绕道式中部车场,即采区上山甩车道由斜面进入平面后再延伸至顶板绕道内,在此设调车线。
其特点为:
设顶板绕道;单向甩入绕道。
适用条件:
运输上山与轨道上山在同一层位上的单一薄及中厚煤层双翼采区。
2平巷式中部车场所谓平巷式中部车场,即采区上山甩车道直接甩入区段平巷中,在平巷中设储车线,如图所示。
其布置特点为:
采区两翼区段的平巷不在同一水平;双向甩入不同标高的区段平巷;巷道交叉点不易维护。
适用条件:
地质构造等原因造成双翼区段不同标高的情况下。
3石门式中部车场所谓石门式中部车场,即采区上山甩车道直接将矿车甩入区段石门,其布置特点:
1)单向甩入石门内;
2)轨道上山与石门再与轨道平巷相连;
3)运输上山与石门再与区段运输平巷相连;
4)石门内设调车场;
5)有利于上下区段过渡期(同时生产)的通风。
石门式中部车场的适用条件:
煤层群联合布置采区,且轨道上山在下部煤层或底板岩石内。
(二)采区中部车场线路布置甩车场线路布置方式按线路布置方式,甩车场线路布置可分为:
1)单道起坡斜面线路一次回转甩车场;
2)单道起坡斜面线路二次回转甩车场;
3)双道起坡斜面线路一次回转甩车场;
4)双道起坡斜面线路二次回转甩车场等。
甩车场线路布置方式甩车场的形式是多种多样的,其线路设计虽有差异,但设计原则和方法基本相同,现以辅助提升的采区中部车场为例进行分析。
甩车场内线路布置按甩车场斜面线路联接系统有单道起坡甩车场和双道起坡甩车场两种,中部车场设计应注意的关键问题选择与布置采区中部车场时,应注意轨道上山与轨道平巷的联接以及运输上山与运输平巷的联接,同时还要注意各巷道间的交叉及相互干挠问题,既要满足运输、行人要求,又要满足通风要求,以形成完善的生产系统
第二章采区中部车场形式
一、采区中部车场基本形式
采区中部车场基本形式有甩车场、吊桥式车场和甩车道吊桥式车场三类。
吊桥式车场和甩车道吊桥式车场适用于上(下)山倾角大于25°的情况,本节主要介绍甩车场,其基本形式。
1、采区中部车场线路布置
(1)甩车场的线路布置分单道起坡和双道起坡两种,一般情况下,宜采用双道起坡。
(2)双道起坡甩车场的道岔布置,可采用甩车道岔和分车道岔直接相连接。
(3)甩车场平、竖曲线位置有以下三种布置方式,一般情况下宜采用前两种布置方式:
①先转弯后变平,即先在斜面上进行平行线路联接,再接竖曲线变平。
平、竖曲线间应插入不少于矿车轴距1.5~2.0倍的直线段,起坡点在联接点曲线之后。
②先变平后转弯,即在分车道岔后直接布置竖曲线变平,然后再在平面上进行线路联接,起坡点在联接点曲线之前。
采区中部甩车场基本形式
项目
单侧甩车场
双侧甩车场
图
示
图注
1-轨道上山;2-运输上山;3-轨道中间巷;KG-高道起坡点;KD-低道起坡点;
K-变坡点
优缺
点
提甩车时间短,操作劳动强度小,矿车能自溜,提升能力大;甩车道处易磨钢丝绳
两翼分别甩车,调车方便,搬道岔劳动量小;推车劳动量大;易磨钢丝绳,两翼人员来往困难,工程量大
适用条件
上山倾角小于25°采区甩车场
上山倾角小于25°采区甩车场,阶段两翼开采不同标高
③边转弯边变平,平、竖曲线部分重合布置。
单、双道起坡甩车场斜面线路布置方式见表1-1。
二、甩车场设计主要参数的选择
(一)甩车场提升牵引长度角
甩车场的提升牵引角φ(矿车上提时,钩头车的运行方向与提升钢丝绳的牵引方向间的夹角(如图7-4所示)不应大于20°,以10~15°为宜。
可采用下列方法减少场提升牵引角:
(1)采用小角度道岔(4号、5号)。
(2)单道变坡二次回转层面角δ或双道变坡二次回转层面角(α1+α2)不大于30°。
(3)双道变坡方式的甩车道岔与分车道岔直接相连接。
(4)没置立滚。
即在上山底板直埋一根钢管,管上套一个长滚轮构成。
(二)道岔
甩车场的道岔型号可按表1-2选择。
表1-1甩车场斜面线路布置方式
起坡点
图示
图注
优缺点
适用条件
单道起坡
回转方式
一次回转方式
1-甩车道岔;
2-分车道岔;
RP-斜面曲线半径;
α1-斜面一次回转角(甩车道岔角);
α2-斜面转角(分车道岔角);
γ-斜面转角;
K-起坡点(落平点);
A-竖曲线起点;
RP1-平曲线半径;
RP2-平曲线半径;
KG-高道起坡点(高道落平点);
KD-低道起坡点(低道落平点);
AG-高道竖曲线起点;
AD-低道竖曲线起点;
δ-二次回转角;
提升牵引角,交岔点巷道断面小,易于维护;空重倒车时间长,推车劳动强度大;动量小
围岩条件好,提升量小的采区车场
二次回转方式
交岔点短,工程量小,易于维护;提升牵引角大,不利于操车,调车时间长,推车劳动量大
围岩条件差,提升量小的采区车场
双
道
起
坡
道岔
|
道岔系统
分车道岔向内分岔斜面线路一次回转方式
提升牵引角小,钢丝绳磨损小,提升能力大;交岔点长、断面大
围岩条件好,提升量大的采区车场
分
车
道
岔
向
外
分
岔
斜
面
一次回转方式
提升牵引角小,钢丝绳磨损小,操车方便,斜面线路短,有利于减少提升时间;交岔点长,对开凿维护不利
围岩条件好,提升量大的采区车场,是目前广泛采用的道岔布置形式之一
二次回转方式
提升能力大,交岔点短,空间大,便于操作,提升牵引角较小
围岩条件差,提升量大的采区车场,是目前广泛采用的道岔布置形式之一
斜面线路先变平后转弯方式
提升牵引角小,线路布置紧凑,提升时间短;交岔点断面大,施工维护不利
围岩条件好,提升量大的采区车场,由于交岔点及落平段断面太大,很少采用
表1-2甩车场道岔选择
道岔名称
主提升
辅助提升
甩车道岔
5号
4号或5号
分车道岔
4号或5号
4号
末端道岔
4号或5号
4号
(三)平、竖曲线
(1)平曲线半径RP取决于轨距、矿车轴距及行车速度。
(2)竖曲线半径RS是甩车场中十分重要的一个参数。
该值过大会增加甩车场竖曲线弧长,延长提升时间;若取值过小,会使矿车在联接处车轮悬空而掉道或将运送的长料搁置于轨道上。
平、竖曲线的半径取值可参照表1-3。
表1-3平竖曲线的选择
调车方式
平曲线半径/m
竖曲线半径/m
600轨距
900轨距
矿车类型
半径
机械调车
9、12、15、20
12、15、20
1.0t、1.5t矿车
9、12、15、20
人力推车
6、9、12、15
9、12、15
3.0t矿车
12、15、20
(四)甩车场线路的坡度
甩车场空重车线的坡度与矿车型式、铺轨质量、车场弯道及自动滑行要求等因素有关。
(1)设高低道的甩车场空重线坡度应按表1-4选取。
表1-4甩车场空重车线坡度
矿车类型
线路形式
空车线iG
重车线iG
1.0t、1.5t矿车
直线
7~12
5~10
曲线
11~18
9~15
3.0t矿车
直线
6~9
5~7
曲线
10~15
8~12
设计中为了计算方便,空、重车线中的直线和曲线段可采用平均坡度计算高低道的最大高差ΔH。
一般空车线iG=11‰,重车线iG=9‰。
然后在存车线高低道闭合点标高计算中进行部分调整。
(2)不设高、低道的甩车场坡度,应采用3~4‰向上(下)山方向下坡。
(五)甩车场的存车线
甩车场存车线有效长度可按表1-5选取。
(六)甩车场的高低道
(1)高、低道最大高差ΔH
双道起坡甩车场由空重车线两个相反的坡度而形成高低道。
高低道标高差在竖曲线起坡点(KG、KD)近达最大值ΔH。
表1-5存车线有效长度的选择
中间轨道巷牵引方式
主提升
辅助提升
小型电机车
1.5列车
1.0列车、0.9Mt/a以上为1.5列车
小绞车
3~4钩中巷串车
2~3钩中巷串车
无极绳
3~4钩上山串车
2~3钩中巷串车
人推车
3~4钩上山串车
2~3钩中巷串车
(1-5)
式中iG、iG——高、低道坡度,‰;
LZG、LZD——高、低道存车线有效长度,m。
在采区中部甩车场设计中,一般ΔH为0.5m左右,设计规范规定最大高差不大于0.8m。
(2)高、低道竖曲线起点错距L2
为了操作方便安全,空重车线高低道竖曲线最好是一点起坡(落平),使摘挂钩点之间没有前后错距,或者高道起坡点适当超前低道起坡点一定错距L2。
一般为1.5m左右,设计规范规定最大错距不应大于2.0m。
在甩车场高、低道竖曲线设计应采取以下两种方法实现一点起坡(落平)的要求:
①以自然高差Δh作为高低道的最大高差(Δh=ΔH),高低道竖曲线采用相同半径(RG=RD)。
该方法适于存车线长度小,高低道高差要求不大的甩车场。
②高道竖曲线采用大半径,使高道竖曲线切线长度满足以下条件:
一次回转方式
(1-2)
二次回转方式
(1-3)
该方法适于高低道高差大,上山倾角β>12°的甩车场。
对于小于12°的轨道上山,高低道高差要求在0.5m以下时,用高道竖曲线大半径的方法,使高低道竖曲线起坡点错距L2达到限定值以内。
(3)高、低道线路中心距
高、低道线路中心距S可按表1-6选取。
表1-6高、低道线路中心距
矿车类型
600轨距
900轨距
1.0t矿车
1900
2200
1.5t矿车
2100
(七)单道起坡甩车场
所谓单道起坡,即在斜面上只布置单轨线路,到平面后根据实际需要布置平面线路。
如图1-7(a)所示。
从上山道利用道岔分出一股线路,道岔岔线后接一段曲线(或不接),这些线路铺设在斜面上,叫做斜面上的线路。
C点以下为平面上的线路。
A点到C点之间的线路,是从斜面到平面的过渡线路,即竖曲线。
竖曲线的末端C叫作起坡点,即平面线路由此向斜面上起坡。
由此可知,甩车场线路系统是一个“立体结构”,既包括斜面上的线路,又包括平面上的线路和竖曲线。
图1-7单道起坡系统
根据斜面线路是否设置斜面曲线,单道起坡甩车场斜面线路有两种布置方式。
1-7中
(1)为斜面一次回转方式。
甩车道岔岔线末端可直接与竖曲线AC相接。
由于斜面线路不设斜面曲线,线路只经过一次角度回转,故称为线路一次回转方式。
回转角度即为道岔的辙叉角α。
斜面线路一次回转后,道岔岔线OA的倾角为伪倾斜角,称为一次伪倾斜角,竖曲线在一次伪倾斜角上起起。
表1-7中
(2)及图1-3为斜面线路二次回转方式。
线路系统是从道岔岔线b段(OD)接以斜面曲线DA,使线路的斜面回转角由一次回转角,进一步增大到二次回转后的β'角,在斜面曲线末端开始布置竖曲线AC,竖曲线是在二次伪倾斜角β"上起坡。
布置斜面曲线的目的是为减少甩车场斜面交岔点的长度,以利交岔点的开掘和维护,并便于采用简易交岔点。
但是斜面曲线转角γ不宜过大,以免加大矿车提升牵引角θ。
提升牵引角是矿车行进方向N和钢丝绳牵引方向(通过立滚)P的夹角,如图1-7(b)所示。
由于有了此角,必然产生横向分力F,角度越大,横向分力也越大,运输可靠性也越差,故在设计时,一般控制斜面线路二次回转后δ角的水平投影角δ为30~35°。
控制其水平投影角为上述整数值,是为了简化平面线路设计,以便于作平面图。
为了绘出设计图纸,必须计算线路系统在平面上的尺寸和纵剖面图上甩车场的坡度和各 标高。
平面图上标注尺寸时,仍可标注斜面真实尺寸,但需用括号括起来。
单道起坡甩车场斜面线路二次回转方式各项参数见图1-7(a、c)、表1-8。
表1-8单道起坡系统甩车场斜面线路参数计算
项目
计算公式
符号含义
斜
面
线
路
二次层面回转角
一次平面回转角
δ=arctan(cosβ•cosδ')
α'=arctan(tanα/cosβ)
a、b-道岔外形尺寸;
α-道岔角;
β-轨道上山倾角;
δ'-斜面线路二次回转角的水平投影角;
R-斜面曲线半径;
R1-竖曲线半径
竖曲线在一次伪角上起坡,各参数计算时以β'代β"
二次伪倾斜角
一次伪倾斜角
β"=arcsin(sinsβ•cosδ)
β'=arcsin(sinsβ•cosα)
线路联结点轮廓尺寸
斜面
曲线
转角
切线
弧长
γ=δ-α
T=Rtan0.5γ
KP=πγ°R/180°
竖
曲
线
竖曲线切线
竖曲线起终点高差
竖曲线水平投影
竖曲线弧长
T'=R1•tan0.5β"
h=R1(1-cosβ")
l'=R1•sinβ"
KP=πγα°R/180°
一般竖曲线和斜面曲线是分开布置的,即竖曲线在斜面曲线之后,二者不重合。
线路联接系统平面图上各部分尺寸计算出来之后,还必须计算甩车场纵面图上各段的坡度和各控制点的标高。
高O点标高±0,则各点标高为
D点:
hD=-hO-D=-b•sinβ•cosα
E点:
hE=-(hD+hD-E)=-(hD+T•sinβ•cosα)
A点:
hA=-(hE+hE-A)=-(hE+T•sinβ•cosα)
C点:
hC=-(hA+hA-C)=-(hA+T'•sinβ•cosα)
计算完毕后,可绘制线距纵面变化图,即线路坡度图,如图1-9所示。
图1-9线路纵断面变化图
若已知坡坡点C的标高,也可反算出道岔岔心的标
(八)双道起坡甩车场
双道起坡的实质是在斜面上设两个道岔(甩车道岔和分车道岔)使线路在斜面上变为双轨,空、重线分别设置竖曲线起坡。
(九)双道起坡甩车场斜面线路布置
按双道起坡甩车场斜面线路布置不同,可有斜面线路一次回转、二次回转两种形式。
图1-5为斜面线路一次回转,其斜面回转我即为道岔角,提升牵引角小,提车甩车均较方便。
线路一次回转时,斜面尺寸计算比较简单。
计算LK值,LK值为单开道岔平行线路联接点长度